PROGRAMME CURRICULUM

AND

SYLLABI OF

DIPLOMA PROGRAMME IN

MECHANICAL ENGINEERING

UNDER RATIONALISED SEMESTER SYSTEM

(IMPLEMENTED FROM ACADEMIC YEAR 2020-2021)

BOARD OF TECHNICAL EDUCATION, GOA STATE

DTE Building, Alto Porvorim, Bardez, Goa 403521 Ph. +91-832-2413571, +91-832-2412146 Fax +91-832-2413572 Email: <u>dir-dte.goa@nic.in</u>

March 2020

SYLLABUS STRUCTURE FOR MECHANICAL ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING (GC101) Communication Skills

1. COURSE OBJECTIVE :

The course aims to develop Communication skills in English by improving students' ability to write ,speak, listen and read effectively. Emphasis is also laid on students' personality development, helping them to build their confidence in interpersonal / group communication.

2. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course co	Course code &		Periods/Week		Total	Examination Scheme				
course	course title		(in hou	ırs)	Hours	Theory		Practical		Total
						Marks		Marks		Marks
(GC10)1)	L	Т	Р	Н	TH	TM	TW	PR/OR	
Communi	cation	-	-	02	32	-	-	25	25	50
Skill	S									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to: GC101.CO1 Understand the essentials of effective Communication.

GC101CO2 Develop reading. writing, speaking, listening and effective presentation skills.

GC101.CO3 Select the appropriate mode of Communication .

GC101.CO4 Demonstrate reading. writing, speaking, listening and effective presentation skills.

4.Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	0	0	0	0	3	3	3
CO2	1	0	1	0	3	3	3
CO3	1	0	1	0	3	3	3
CO4	1	0	0	0	3	3	3

Relationship : Low-1 Medium-2 High-3

5. DETAIL	ED COURSE CONTEN	TS / MICRO-LESSON	PLA	N	_
M = Marks	Phr = Practical hours	CO = Course Outcomes			
		outcomes			
Unit			Μ	Phr	CO
		NDAMENTALS OF	-		
	ICATION SKILLS nication Skills fundame	ntals		01	
Definition,	communication proc	ess, importance of		01	
	tion Skills, essentials of e				
Nonverbal expressions, grooming/pe hygiene)	of communication: verb communication (Boc gestures, eye contact ersonal appearance, ic (Volume, pace, pitch, p		02	CO1 CO2 CO3 CO4	
	ers to communication al barriers and cultural ba	1 0		01	
2. Unit: PI	RESENTATION SKILL	S			
presentation gender, pro background)	d style of presentation, , venue selection, aud ofession background, e) time and duration, audio lip charts, white/black/g		02	CO2 CO3 CO4	
beginning a	speaking: preparatory and end, delivery style, etition, signs, pictures, hur	techniques for a good		02	
3 UNIT: TH	ECHNICAL Writing				
	nd parts of a report, Qua Report on any institute fu	• 1		04	
formats (Fu style) Routine/ Ge letter to the institute)	f effective letter writing, p Il block style, Semi bloc eneric letters (letter to the e heads of various depa tters: Enquiry Letter, Quo	k style, modified block e heads of the institute, rtments/sections of the		06	CO1 CO2 CO4
3.3 Job app	lication Tips for a good C	C.V and a Resume		02	

4 UNIT GRAMMAR	-		
4.1 Fundamentals of English writing		02	
Subject verb agreement, homonyms, homophones,			CO1
homographs, articles, Punctuation, synonyms, fundamentals			CO2
of sentence construction			CO4
4.2 Paragraph Writing: Developing Topics (the main idea),		02	
body (supporting sentences), conclusion, proof reading			
UNIT V: LANGUAGE WORKSHOP	-		
5.1 Reading Skills			
strategies to use for building vocabulary and reading			CO1
fluencies (read extensively, identify new words, use of		08	CO1 CO2
dictionary, online dictionary apps), reading comprehension,		00	CO4
pronunciation, debate, role play,			
5.2 Listening Skills How to listen effectively, listening			
comprehension			
5.3 Speaking skills speech, group discussion			
5.4 Writing skills précis writing, comprehension			
Total		32	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, videos, exercises

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		NO of lectures	Marks
1	Fundamental of Communications skills		04	-
2	Presentation Skills		04	-
3	Technical Writing		12	-
4	Grammar		04	-
5	Language workshop		08	-
		Total	32	25

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical
1.	Practical Title: Fundamental of Communications skills
i.	Comprehension
ii.	Précis writing
iii.	Self-Introduction
2	Practical Title: Presentation Skills
iv.	Extempore speech
v.	Presentation on any given Topic
3	Practical Title: Technical Writing
vi.	Accident Report
vii.	Report on Institute function
viii.	Industrial visit report
ix.	Generic letters to the heads of various department/ Sections of the institute
х.	Inquiry letter
xi.	Quotation

Durchase or supply order
Purchase or supply order
Complaint letter
Job application
Grammar
Exercises in subject – verb agreement
Exercises in use of preposition
Exercises in use of Homophones, homonyms, homographs
Exercises in use of punctuation
Exercises relating to correcting the sentences
Paragraph writing
Language workshop
Exercises to improve Reading skills
Exercises to improve Writing skills
Group discussion
Listening comprehension

9. LEARNING RESOURCES Text Books

S. No.	Author	Title of Books	Publishers	
1	R. C. Sharma & Krishna	Business Correspondence and	Tata McGraw Hill	
	Mohan	Technical Writing		
2	P. Prasad, Sharma, K.	The Functional aspects of	S.k. Kataria& sons	
	Rajendra	communication skills		
3	SanjayKumar,Pushpa Lata	Communication Skills	Oxford University	
			Press	
4	A.K.Jain,A.M.Shaikh&Pra	Professional communication	S.Chand	
	vin S R Bhatia	Skills		
5	Wren & Martin	High School English Grammar	S. Chand, N. Delhi	
		& Composition		

10.Reference Books for further study

S. No.	Author	Title of Books	Publishers	
1	Raul R. Timm	How to make winning presentations	Sneha Printers	
2	Dale Carnegie, Training CPI	Stand and Deliver, How to become a masterful communicator and public speaker	Cox & Wyman, UK	
3	John Seely	The Oxford Guide to Effective Writing and speaking	Oxford University Press	

Autobiographies, self-help books, Audio speeches given by famous personalities Internet and Web Resources

https://www.grammarly.com/

https://www.bbc.co.uk/programmes/articles/5QFnVy3xzT5htTh13cmP2P8/teacher-resources https://Ted.com

Videos and Multimedia Tutorials https://you.tu.be/AykYRO5d_II

(GC102) Engineering Mathematics I

1. COURSE OBJECTIVE:

1. The course is aimed at providing mathematical knowledge, developing computational skills and reasoning. It also helps students to think logically and in systematic manner so as to grasp mathematical concepts easily. It helps to build analytical thinking which play an important role in solving real world problems in all scientific discipline.

2.TEACHING AND EXAMINATION SCHEME

Semester I									
Course code &	Periods/Week			Total	Examination Scheme				
course title	(in hours)		hours	Theory		Term	Total		
				Marks		Work	Marks		
		T				1		_	
(GC102)	L	Т	Р	Н	TH	ТМ	ТW		
Engg.Maths I	4	2	-	96	75	25	25	125	

3.COURSE OUTCOMES:

GC102.CO1. Understand the basic mathematical concepts for Engineering applications.

GC102.CO2. Identify and use appropriate formulae for solving practical engineering

problems

GC102.CO3. Apply formulae of algebra, geometry, trigonometry and calculus for solving

problems.

GC102.CO4 . Co-relate mathematical formulae to practical problems.

4.Mapping Course Outcomes with Program Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	3	2	1	0	0	0	2
CO2	3	3	1	0	1	0	1
CO3	2	2	3	3	2	0	1
CO4	2	3	3	2	1	1	1

Relationship :Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN								
M = Marks	Thr = Teaching hours	CO = Course Objectives						
Unit	Marks	Thr	CO					
1 MATHEM	IATICS FUNDAMENTA	8	6	CO1				
-	tials: Types of polynomi stion to be asked), Multij ials	3	2					
1.2 : Algebr geometri one, two and three Ouadrati	3	2						
1.3: Logari base'10'	log, log and antilog, prob	log with base 'e' and	2	2				
2.STRAIGH	T LINES AND CIRCLE	S	15	14	CO1, CO4			
Equations of points form, j	line: Intercept, slope, inte line: 1. Slope intercept for parallel and perpendicular r distance of a point from 1	8	7					
	circle as a locus, Centre, di circle: Centre radius forn		7	7				
3. TRIGON	OMETRY				CO1,			
and related su 3.2: Trigonou 3.3: Trigonou 3.4: Product 2 3.5: Sum and 3.6: Multiple	nd measurement, degree ar ums, arc length and area of netric ratios and identities netric ratios of compound formulae sinA <u>+</u> sinB, cosA difference formulae angle 2A, and their trigon c, Cosine rule in triangle, so	sector and sums and allied angles <u>+</u> cosB ometric ratios,	12	15	CO3			
4: MENSU	RATION		10	6	CO1,			
(no questions	e area and volumes of cub	-			- CO4			

	1	i	1 1
Surface areas and volumes of prism, pyramid,			
4.3: Frustum of cone, pyramid and their surface areas and			
volumes.			
4.4: Simpson's 1/3 rd rule for area and volume			
5 :CALCULUS	30	23	CO1,
5.1:Limits 5.1.1 : Pre requisite : Sets , intervals, relation and	7	6	CO2,
function (no questions to be asked)	,	0	соз,
5.1.2 : Limit of a function , algebraic properties of limits			CO4
5.1.2: Limits of algebraic, trigonometric, exponential,			
logarithmic functions			
5.2 : Derivatives	15	12	-
5.2 .1: Derivative definition by first principle (no question to be			
asked)			
5.2.2: Standard formulae, Algebraic properties of derivative			
$(\underline{u}+\underline{v})$ etc.			
5.2.3: Derivatives of algebraic, trigonometric, exponential,			
logarithmic functions			
e			
5.2.4: Derivative of product of functions (uv rule).			
5.2.6: Derivative of quotient of functions (u/v rule)			
5.2.7: Derivative of composite functions			
5.2.8: Derivative of parametric functions			
5.2.9: Derivative of implicit functions			
5.2.10 : Logarithmic differentiations			
5.2.11: Second order derivatives (no question to be asked)			
5.3 : Applications of derivatives	8	5	-
5.5. Applications of derivatives	0	5	
5.3.1: Application to the geometry: i) derivative as a slope of a			
tangent			
ii) to find equations of tangent and normal at given point on the			
curve			
5.3.2: Application to the Linear motion:i) displacement,			
velocity, acceleration			
5.3.3: Application to the rate measure i) to find rate change in			
area and volume etc			
5.3.4 : Maxima and minima			
	75	64	
Total	15	04	
	1	1	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises

7. SPECIFICATION TABLE FOR THEORY

Unit No	Unit	Number of lectures	Marks
1	Mathematics Fundamental	06	8
2	Straight line and circle	14	15
3	Trigonometry	15	12

Directorate of Technical Education, Goa State

4	Mensuration	06	10
5	Calculus	23	30
	Total	64	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

- Tutorial books should be maintained by students (5 marks)
- Two home assignments per semester (5 marks)

The Two assignments each comprises of thirty questions which includes 15 short questions and fifteen long questions. First assignment will cover fifty percent of syllabus

and second assignment will cover remaining portion of syllabus

• Topic-wise class assignment (15 marks)

Class assignment comprises of ten short and ten long questions.

9. LEARNING RESOURCES

Text Books

S. No.	Title of Books	Author	Publishers
1	Mathematics for Polytechnic Students(Basic Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune
2	Mathematics for Polytechnic Students(Engineering Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune
3	S.B. Gore, M.B.Patil, S.P. Pawar	Applied Mathematics	Vrinda Publications

Reference Books for further study

S. No.	Title of Books	Author	Publishers
1	Applied Mathematics I	Dr. U.B.Jangam, K.P. Patil, Nalini Kumthekar	Nandu Printers& Publishers pvt. Ltd. Mumbai
2	Applied Mathematics for Polytechnics	H.K. Dass	CBS Publishers and distributers Pvt.Ltd. ,Pune
3	Set Theory and related topics	Seymour Lipschutz	McGraw-Hill

(GC103) APPLIED PHYSICS-I

1.COURSE OBJECTIVE :

On successful completion of the course, Students completing the Applied Physics I course will be able to demonstrate competency and understanding of the basic concepts found in, Units and Dimensions, Kinematics of motion in one dimension Force Work Power and Energy, Circular Motion and Gravitation, Properties of Matter and Heat and will be able to utilize the knowledge to demonstrate competency with experimental methods that are used to discover and verify the concepts related to content knowledge

2.TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course code	&	Per	riods/V	Week	Total	Examination Scheme				
course title		(i	in hou	rs)	Hours	The Ma	v	-	actical Iarks	Total Marks
(GC103) Appl	ied	L	Т	Р	H	TH	TM	TW	PR/OR	
Physics I		03	0	02	80	75	25	25	-	125

3.COURSE OUTCOMES:

GC103.CO1: Understand the Fundamental concepts of physical quantities, Force, Power, Energy, Motion, Matter and heat transfer used in Engineering applications.

GC103.CO2: Explain the concepts of Dimensions, Work, Power, Energy, Motion, properties of matter and heat transfer

GC103.CO3: Apply the Knowledge of Physical quantities, Types of motions, Force, work ,Power, properties of matter and heat transfer in Engineering applications

GC103. CO4: Analyze different types of Physical quantities, motions, properties of matter, and modes of heat transfer

4. Mapping Course Outcomes with Program Outcomes

Relationship: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

iteration	Relationship. 1. Sught (Low) 2. Moderate (Medium) 5. Substantial (High)							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn& Testing	Engg. Practices for Society,Sustainabilit y& Environment	Project Management	Life -long Learning	
CO 1	3	1	1	3	2	0	3	
CO 2	3	1	2	3	0	0	3	
CO 3	3	1	2	2	0	1	1	
CO 4	1	1	2	2	0	1	1	

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			T
Unit	Thr	Μ	CO
1 UNIT NAME: UNITS AND DIMENSIONS	08	12	CO1,
1.1 Fundamental and Derived units,			CO2,
1.2 Different system of units, SI unit conversion from one system to other,			CO3,
1.3 Principle of Homogeneity,			CO4
1.4 Dimensions, dimensional formula,			
1.5 dimensional correctness of given equation using dimensions			
1.6 least count of vernier calliper and screw gauge			
1.7 zero errors in case of vernier calliper and screw gauge			
1.8 Types of error.			
2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE,	10	16	CO1,
WORK,POWER AND ENERGY			CO2,
2.1 Distance and displacement,			CO3,
2.2 Scalar and Vectors			CO4
2.3, Speed and Velocity, Uniform Velocity,			-
2.4 Uniform acceleration, acceleration due to gravity			4
2.5 Equation of motion (v=u+at, $v^2=u^2+2as$, s=ut+1/2at ²)(no derivation)			4
2.6 Motion under gravity. Force and its unit.	<u> </u>		4
2.7 Work and its unit. Energy, law of conservation of energy,			
2.8. Kinetic and Potential energy equation and examples.			
3. UNIT NAME: Uniform Circular Motion and Gravitation	10	16	CO1,
3.1 Unifrom circular motion,			CO2,
3.2 Definition angular displacement, angular velocity, ,			CO3,
3.3 Conversion from rpm to rad/sec, v=r ω , tangential velocity, radial			CO4
acceleration			_
3.4 Centripetal force and centrifugal force, examples,			
3.5 Banking of roads, superelevation, expression for angle of banking			
3.6 Newtons law of gravitation, acceleration due to gravity,			
3.7 Expression for acceleration due to gravity. Escape velocity, Critical			
velocity, and periodic time definition and expression (no derivation)			
3.8. Sattellite, types(Geosationary,communication remote sensing)			
4. UNIT NAME: PROPERTIES OF MATTER	10	16	CO1,
4.1 Elasticity,			CO2,
4.2 Stress, Strain, Hooke's law,			CO3,
4.3 Youngs Modulus,			CO4
4.4 Bulk Modulus, Rigidity Modulus,			
4.5 Stress v/s Strain graph			
4.6 Yield point, breaking stress, factor of safety, ,]
4.7 Surface tension definition and example			1
4.8. Adhesive and cohesive force, application,			1
4.9 liquid miniscus and angle of contact, capillarity,	1		1
4.10 Expression for surface tension (no derivation), applications. viscocity,	1		1
4.11 Definition velocity gradient, newtons law of viscocity, terminal	1		1
velocity, stokes law,			
4.12 Streamline flow and turbulent flow, critical velocity, application of	1		1
viscocity.			
5. UNIT NAME: HEAT	10	15	CO1,
5.1 Statements of boyles law, charles law, gay lussacs law	-	-	CO2,

Directorate of Technical Education, Goa State

5.2 General gas equation, specific heat definition and unit, Latent heat		CO3,
definition and unit		CO4
5.3 Modes of transfer of heat, conduction, convection and radiation,		
5.4 Conduction of heat through a metall rod,		
5.5 Variable and Steady state		
5.6 law of thermal conductivity (With Derivation)		
5.7 Applications of thermal conductivity, ,		
5.8. Thermal expansion of solids		
5.9 linear expansion, superficial expansion,		
5.10 Cubical Expansion		
5.11 Realtion betwenn α, β, γ (no derivation)		
5.12 Engineering applications of expansion of solids.		

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies. **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit	Unit	Number of	Marks
No		lectures	
1	UNITS AND DIMENSIONS	8	12
2	MOTION IN ONE DIMENSION, FORCE, WORK AND	10	16
	ENERGY		
3	UNIFORM CIRCULAR MOTION AND GRAVITATION	10	16
4	PROPERTIES OF MATTER	10	16
5	HEAT	10	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS

No	Practicals	Marks
1.	Basic Conversion Techniques from one system of units to the other	25
2.	Use of Vernier callipers to find the Volume of Hollow cylinder, Block	25
3.	Use of Screw gauge to find the cross-sectional area of a wire and	25
	thickness of a clip	
4.	To find the Coefficient of Viscosity of a given liquid by stokes method	25
5.	To Find the coefficient of Thermal Conductivity by Searle's Method	25
6	To Find the Surface Tension of a given liquid by capillary rise method	25
7	To Find Young's Modulus by Searles Method	25
8	To Find acceleration due to gravity by simple pendulum method.	25
	Total (Average)	25

9. LEARNING RESOURCES Text Books

S. No.	Author	Title of Books	Publishers
1	B G Dhande	Applied Physics of Polytechnics	Pune Vidyarthi Griha
			Prakashan
2	Bhandarkar	Applied Physics of Polytechnics	Vrinda publication
3	R K Gaur and S L	Engineering Physics	Dhanpat Rai & Sons
	Gupta		Delhi
4	Dr. Vasudev R	A Text Book of Applied Physics for	Broadway Publishing
	Bhagwat	Polytechnics	House
5	B L Thereja	Engineering Technology	S. Chand

S. No.	Author	Title of Books	Publishers
1	Halliday D and	Physics Part I-II	Wiley Eastern Ltd.
	Resnick		
2	Satish k. Gupta	ABC of Physics I&II	Modern Publisher
3	Saxena HC and	Applied Physics Vol I & II	S. Chand Publisher
	Singh Prabhakar		

Reference Books for further study

(GC104) Applied Chemistry

1. COURSE OBJECTIVE:

Chemistry is the branch of Science which deals with the study of composition, properties and changes in matter. An understanding of the basic concepts of Applied Chemistry, chemical principles and chemical properties of materials is essential to all the engineers. The emphasis is on applying the knowledge of principles of chemistry in all the fields of engineering wherein students appreciate the significance of chemistry in day to day life. The subject develops in students the habit of scientific enquiry, the ability to investigate cause and effect relationship & the ability to interpret & analyze the results.

Semester	Ι									
Course code &		Peri	iods/V	Veek	Total		Exan	nination	n Scheme	
course title		(iı	n houi	rs)	Credits	The	ory	Pra	nctical	Total
				(Hours)	Ma	rks	Marks N		Marks	
(GN104) App	plied	L	Т	Р	Н	TH	TM	TW	PR/OR	
Chemistr	у	3	-	2	80	75	25	25	-	125

2. TEACHING AND EXAMINATION SCHEME

3. COURSE OUTCOMES:

- GC 104.CO1: Understand the fundamental concepts of Atomic Structure, electrochemistry, water quality, corrosion and polymers.
- GC 104.CO2: Explain the process of Chemical bonding, water softening, electroplating, corrosion control and polymerization
- GC 104.CO3: Relate the principles of Chemical Bonding, Electrolysis, water hardness for domestic and Industrial applications and properties of polymers.
- GC 104.CO4: Distinguish between types of Chemical bonding, Water softening methods, corrosion control methods, different processes of metal coating and different polymers.

- Mapping	4. Mapping Course Outcomes with Frogram Outcomes											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7					
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentin g& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning					
CO1	3	2	1	1	2	1	1					
CO2	2	3	2	1	3	1	2					
CO3	3	2	2	2	3	1	2					
CO4	3	2	2	2	2	1	1					

4. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives			
Unit			Mks	Thr	CO
UNIT 1.0 : /	15	10	CO1		
					CO2
1.1 Atomic S	tructure				CO3
1.1.1 Fundam	nental particles and their ch	naracteristics.			CO4
1.1.2 Energy	levels - Definition & design	gnation			
1.1.3 Sub Er	ergy levels- Definition & o	designation			

	, acc	Dia	.0
1.1.4 Orbital – Concept & shape (s and p only)			
1.2 Quantum numbers			
1.2.1 Designation, definition, values.			
1.3 Electronic distribution (Elements from atomic Number 1-20)			
1.3.1 Bohr – Bury's laws for distribution of electrons in shells (1 st three			
laws only)			
1.3.2 Aufbau Principle. for distribution of electrons in sub-shells			
1.3.3 Pauli's Exclusion Principle.			
1.3.4 Hund's Rule of maximum multiplicity			
1.3.5 Orbital Electronic Configuration of elements (from atomic numbers 1			
to 20 only).			
1.4 Chemical Bonding			
1.4.1 Lewis and Longmuir concept of stable configuration.			
1.4.1 Lewis and Longhun concept of stable configuration. 1.4.2 Electrovalent - Bond - Concept			
1			
Formation of Electrovalent Compound (NaCL & MgO)			
1.4.3 Covalent Bond – Concept			
Formation of Colvalent Compounds (Cl_2, O_2, N_2)			
1.4.4 Co-ordinate Bond - Concept			
Formation of Co-ordinate Compounds (O ₃)			
1.4.5 Properties of Electrovalent, Colvalent & Co-Ordinate compounds.			
	1.5	10	
UNIT 2.0 : WATER	15	10	COL
2.1 Hardness of Water			CO1 CO2
			CO2 CO3
2.1.1 Soft and Hard Water - Concept			
Soap Test (Chemical Equation not expected)			CO4
2.1.2 Causes of Hardness			
2.1.3 Types of Hardness			
2.1.4 Degree of Hardness & Units of Hardness (mg/L & ppm)			
22 Disadvantages of Hand Water			-
2.2 Disadvantages of Hard Water			
2.2.1 Domestic Purpose			
Drinking, cooking, Washing & Bathing.			
2.2.2 Industrial Purpose			
(Paper Industry, Textile & Dyeing Industry, Sugar Industry, Bakery			
& Concrete Making)			
2.2.3 Boilers- Steam Generation Purpose.			
Sludge formation – causes & Disadvantages (No chemical equation			
expected)			
2.2 Western Co-fiterning			-
2.3 Water Softening			
2.3.1 Zeolite and Ion Exchange process of water softening			-
2.4 Desalination of water			
2.4.1 Electrodialysis & Reverse Osmosis process.			
2.4.2 pH- Concept, pH scale & Importance of pH			
ΙΝΗΤ 2.0. ΕΙ ΕΛΤΡΟΛΙΕΜΙΚΤΡΥ	12	00	CO1
UNIT 3.0 : <u>ELECTROCHEMISTRY</u>	12	08	CO1 CO2
3.1 Electrolytic dissociation			CO2 CO3

Directorate of Technical Education	1, uu	i Stat	.L	
3.1.1 Arrhenius theory of Electrolytic dissociation			CO4	
3.1.2 Factors affecting degree of Ionization- nature of solute, nature of				
solvent, concentration				
of solution and temperature.				
3.2 Electrolysis			-	
3.2.1 Mechanism of Electrolysis.				
Ionization Reactions				
Reactions at cathode, Activity series of Cations.				
Reactions at Anode, Activity series of Anions.				
3.2.2 Electrolysis of				
Molten NaCl using Carbon Electrodes.				
Aqueous NaCl using Platinum Electrodes.				
Aqueous $CuSO_4$ using Platinum Electrodes.				
Aqueous CuSO4 using copper Electrodes.				
3.3 Electrochemical series – Definition and Significance			-	
UNIT 4.0 : CORROSION AND ITS CONTROL	25	14	CO1	-
			CO1	
4.1 Dry /Direct Chemical corrosion			CO3	
4.1.1 Definition			CO4	
4.1.2 Oxidation corrosion			001	
4.1.3 Corrosion due to other gases.				
4.3 Types of Electrochemical corrosion.			-	
4.3.1 Galvanic Cell corrosion				
4.3.2 Concentration cell corrosion(Metal ion concentration & differential				
Aeration)				
Actation				
4.4 Corrosion Control			1	
Protection of metals by:				
4.4.1. Using Pure Metals & Metal alloys				
4.4.2 Proper designing				
4.4.3 Modifying the environment (De- aeration, Deactivation,				
Dehumidification, Alkaline neutralization)				
4.4.4 Cathodic protection (Sacrificial anode and Impressed current				
cathodic protection)				
4.4.5 Metal Coating (Galvanizing, Tinning, Metal-Spraying,				
Electroplating & powder coating)	08	06	CO1	
UNIT 5: POLYMERS	00	00	CO1 CO2	
5.1 Concept of Monomers & Polymers			CO3	
5.1 Concept of Wonomers & Forymers			CO4	
5.2 Polymerization- Definition.				
5. 2.1 Addition polymerization-Definition.				
5.2.2 General equation of polymerization of :-				
Ethylene to Polyethylene.				
Vinyl chloride to Polyvinylchloride				
Tetra fluoro ethylene to Poly tetra fluoroethylene(PTFE)				
5.2.3 Condensation Polymerization-Definition				
5.2.4 General Equation for formation of Phenol formaldehyde Resin.				
	L	I	L	J

5.3 Plastics.5.3.1 Types of plastic (Thermosetting and Thermo softening), Examples5.3.2 Properties and applications of Poly-ethylene, PVC, polystyrene, Nylons, Bakelite & silicones.		
5.4 Rubber		
5.4.1 Natural Rubber		
5.4.2 Drawbacks of Crude rubber.		
5.4.3 Vulcanization of Rubber (General Equation)		
5.4.4 Rubber examples.		
5.4.5 Properties of Synthetic Rubber & related applications.		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies 9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Mark s
1	ATOMIC STRUCTURE AND CHEMICAL BONDING	10	15
2	WATER	10	15
3	ELECTROCHEMISTRY	08	12
4	CORROSION & IT'S CONTROL	14	25
5	POLYMERS	06	08
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical
	Practical Title
1.	Double Acid-Base Titration using Phenolphthalein.
2.	Acid- Base titration using Methyl orange.
3.	Redox Titration of KMnO ₄ soln., FeSO ₄ soln. and Oxalic acid
4.	Determination of degree of Hardness by E.D.T.A method.
5.	Determination of Total Alkalinity of water sample.
6.	Determination of Chloride content of water sample by Mohr's method.
7.	pH- Metric titration.
8.	Conduct metric Titration.
9.	Determination of Conductivity of water samples from different water body
	sources.
10.	Corrosion Susceptibility of Aluminum to Acid or Base.
11.	Determination of pH of different food items.
	Total Marks: 25
	No Class room Assignments
* Ar	y TEN of the above.

****Term Work Assessment Scheme**:1. Performance:15 marks (Carrying out experiment, Readings, Calculations and Results)

2.Knowledge :05 Marks(Theory of the experiment)

3. Journal : 05 Marks

11. LEARNING RESOURCES Text Books

I CAL DU	UNS		
S. No.	Author	Title of Books	Publishers
1	M.M. Uppal	Text book of Engg. Chemistry	Khanna Publisher
2	V.P.Mehta	Text book of Engg. Chemistry	Jain Bros. Delhi
3	S.N Narkhede	Textbook of Engg. Chemistry	Niraj Prakashan
5	S S Dara	A Textbook of Engg. Chemistry	S Chand & Co
4	P.C. Jain and M.Jain	Engg. Chemistry.	Dhanpat Rai
			Publishing Co.

(GC105) Basic Engineering Practice (Electronics& Comp.) 1. COURSE OBJECTIVE:

The students will be able to acquire knowledge about safety aspects, firefighting, first-aid and carpentry, fitting, plumbing skills. The students will learn proper ways of using various hand tools, measuring devices in acquiring these skills and will also interpret simple electrical drawings/circuit diagrams.

2. TEACHING AND EXAMINATION SCHEME

Course	& Week		ourse Periods/ Total Examination Scher					cheme	
Code & Course Title			Hours Theory M		y Marks	Practical Marks		Total Marks	
(GC 106)	L	Т	Р	H	TH	TM	PR/OR	TW	
Basic									
Engineering	0	0	5	80	-	-	50	100	150
Practice									

3. COURSE OUTCOMES:

PART A

On successful completion of the course, the student will be able to: GC106.CO1. Understand safety procedures to be followed in carpentry, fitting, and plumbing. GC106.CO2. Identify various tools used for carpentry, fitting, and plumbing. GC106.CO3: Demonstrate basic working skills in carpentry, fitting and plumbing.

GC106.CO4: Plan & execute a job/activity using job drawing.

PART B

On successful completion of the course, the student will be able to:

GC106.CO1. List the safety measures to be observed in electrical workshop.

GC106.CO2. Identify various electrical tools, fittings used for electrical measurements & troubleshooting.

GC106.CO3: Distinguish between single phase and three phase supply.

GC106.CO4: Plan & execute a job/activity from electrical circuit drawing.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

PART A

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	2	1	1	3	2	2	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-3

PART B

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	3	1	1	2	2	1	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Hr = Practical Hours	CO = Course Outcomes			
Unit		Μ	Hr	CO
1 General Safety, Housekeeping, Fire	10	06		
1.1Introduction to General Safety aspect	ts of engineering workshop			CO1
1.2 Meaning and importance of houseke	eeping.			
1.3 Fire hazards, fire triangle, types of	fire extinguishers – selection			
and use.				
1.4Basic knowledge of first aid with sp	pecific inputs on cuts, burns,			
electric shocks, artificial respiration, han	dling emergencies.			
2 Fitting Workshop Practice		30	18	
2.1 Introduction to the trade.				CO1
2.2 Introduction to various hand Too	ls, Measuring and Marking			CO2
Tools, cutting tools, Holding tools, Strik	ing tools			CO3
2.3 Types of files and filing methods.				
2.4 Drill bits and drilling Processes, usin	ng portable and pillar drilling			
machine.	_			
2.5 Operations performed in fitting shop	such as measuring, marking,			
chipping, filing, grinding, sawing, drillin	g			

2.6 Threading using taps and dies.			
3 Carpentry Workshop Practice	20	18	
3.1 Introduction to carpentry			CO1
3.2 Types of wood and its characteristics, forms of wood, defects in			CO2
timber and its identification, wood working hand tools			CO3
3.3 Wood working processes.			
3.4 Different types of joints and their usage.			
3.5 Introduction to wood working machines:			
3.6 Lathe			
3.7 Circular saw			
3.8 Band saw			
3.9 Wood planner			
3.10 Universal wood working machine			
4 Electrical Workshop Practice	30	32	
4.1 Brief introduction to power distribution and Electrical Safety.			CO1
4.2 Use of different hand tools used in electrical trade			CO2
4.3 Collection of details of motors and transformers.			CO3
4.4Introduction to Control Panel and its various sections/components.			CO4
4.5 Making of wire joints.			
4.6Measurement of current, voltage, frequency and Power			
Consumption.			
4.7 Connecting and starting of Induction Motor & Measurement of			
its speed. Changing of Direction of rotation of induction motor.			
4.8 Introduction to commonly used electrical Fittings (Domestic &			
Industrial).			
4.9Wiring of Simple Electric Circuit (Bulb & plug point and			
switches) on wooden board			
4.10 Study, connection & use of Energy Meter			
4.11Testing of components using Series test lamp & Multimeter			
4.12Study of Fuses & practice replacement of Fuse			
4.13 Study & Troubleshooting of Tube Light			
5 Plumbing	10	06	
5.1Plumbing tools, pipe fittings and method of joining pvc pipes.			CO1
5.2 Use of spirit level and plumb bob.			CO2
5.3 Minor repairs and replacement of fittings.			CO3
5.4 Reading of plumbing drawings.			
[Note: Plumbing restricted to domestic plumbing and pvc piping.]			
Total	100	80	
10tai	100	σU	

6. COURSE DELIVERY:

The Course will be delivered through workshop practical sessions in mechanical and electrical workshops. **7. SPECIFICATION TABLE FOR PRACTICALS/ MACRO-LESSON PLAN**

Unit No	Unit	Number of hrs.	Marks
1	General Safety, Housekeeping, Fire Fighting & First Aid	06	10
2	Fitting Workshop Practice	18	30
3	Carpentry Workshop Practice	18	20
4	Electrical Workshop Practice	32	30
5	Plumbing	06	10
	Total	80	100

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Hrs.
1	General Safety, Housekeeping, Fire Fighting & First Aid	06
a	Demonstration on use of Safety Measures while working in Workshop and	03
	use of safety signs.	00
b	Demonstration on use of First Aid and Artificial Respiration procedure	03
U	,Training on fire and emergency services (using video presentation /fire and	02
	safety expert talk)	
2	Fitting Workshop Practice	18
<u>a</u>	Identification of various hand Tools, Measuring and Marking Tools,	03
u	cutting tools, Holding tools, Striking tools	05
b	Identification of various types of files and demonstration on filing methods.	03
c	Identification of various types of Drill bits, taps, dies and Drilling machines	03
C	such as portable and Pillar Drilling machine.	05
d	Job involving filing, marking, cutting operation on MS Flat.	06
		00
e 2	Job involving Drilling and Tapping operation on MS flat.	
3	Carpentry Workshop Practice	18
a	Identification of various types of woods and wood working hand tools	03
b	Identification of various types of Carpentry joints and their usage.	03
с	Introduction to wood working machines such as wood working Lathe,	03
	Circular saw ,Band saw, Wood planner, Universal wood working machine	
d	Job involving marking, measuring, planning, sawing, chiseling, joint	06
	preparation and assembly of wooden blocks.	
e	Preparation of job on wood working lathe.	03
4	Electrical Workshop Practice	32
а	Measurement of Single Phase and Three Phase supply Voltage using	02
	multimeter.	
b	Identification of various hand tools used in electrical trade.	02
с	Measurement of electric circuit parameters using Ammeter, Voltmeter,	04
	Frequency meter, Wattmeter.	
d	Making of Straight and T wire joints.	02
e	Testing of electrical components such as Choke, starter, Fuse, Switch using	02
	Series Test lamp and Multimeter	
f	Starting of induction motor using DOL Starter	02
g	Reversal of direction of rotation of Three phase induction motor	02
h	Identification of commonly used electrical fittings.	02
i	Wiring of simple electrical circuit using bulb and socket.	04
i	Measurement of Energy using Energy Meter.	02
k	Identification of Different types of Fuses and their replacement in circuit.	02
1	Testing of various components and connection of Tube light circuit.	02
m	Collecting Name plate Details of Motors and Transformers and operating	04
	and controlling speed of motor from Control panel.	.
5	Plumbing	06
а	Identification of Plumbing tools and pipe fittings, Reading of plumbing	03
	drawings, methods of joining PVC pipes, use of spirit level and plumb bob	
	in piping.	
b	To carry out minor repairs and replacement of fittings.	03

9. LEARNING RESOURCES TEXT BOOKS

	BOOKS				
S.	Author	Title of Books	Publishers		
No.					
1	N. Sesha Prakash	Manual of Fire Safety	CBS Publishers and Distributers		
2	S.K. Hajara- Chaudhary	Workshop Technology	Media Promoters		
3	B.S. Raghuwanshi	Workshop Technology-	Dhanpat Rai and sons, New Delhi		
4	R K Jain-	Production Technology	Khanna Publishers, New Delhi		
5	H. S .Bawa	Workshop Technology	Tata McGraw Hill Publishers, New Delhi		
6	Kent	Mechanical Engineering Hand book	John Wiley and Sons, New York		
7	B.L. Theraja	Fundamentals of Electrical Engineering and Electronics	S. Chand – New Delhi		

REFERENCE BOOKS FOR FURTHER STUDY

S. No.	Author	Title of Books	Publishers		
1	CIMI- Central	Turner – Trade Theory – Ist and	Wiley Eastern Ltd.		
	Instructional Media	IInd Year	New Delhi		
	Institute Madras				

(GC106) Basic Engineering Practice (Mech & Elect.)

1. COURSE OBJECTIVE:

The students will be able to acquire knowledge about safety aspects, firefighting, first-aid and carpentry, fitting, plumbing skills. The students will learn proper ways of using various hand tools, measuring devices in acquiring these skills and will also interpret simple electrical drawings/circuit diagrams.

2. TEACHING AND EXAMINATION SCHEME

Course	Periods/		Total		Exan	nination S	cheme		
Code & Course Title	Week (In Hours)		Hours	Theory Marks		Practica	Total Marks		
(GC 106)	L	Т	Р	H	TH	TM	PR/OR	TW	
Basic									
Engineering	0	0	5	80	-	-	50	75	125
Practice									

3. COURSE OUTCOMES:

PART A

On successful completion of the course, the student will be able to: GC106.CO1. Understand safety procedures to be followed in carpentry, fitting, and plumbing. GC106.CO2. Identify various tools used for carpentry, fitting, and plumbing. GC106.CO3: Demonstrate basic working skills in carpentry, fitting and plumbing.

GC106.CO4: Plan & execute a job/activity using job drawing.

PART B

On successful completion of the course, the student will be able to:

GC106.CO1. List the safety measures to be observed in electrical workshop.

GC106.CO2. Identify various electrical tools, fittings used for electrical measurements & troubleshooting.

GC106.CO3: Distinguish between single phase and three phase supply.

GC106.CO4: Plan & execute a job/activity from electrical circuit drawing.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

PART A

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	2	1	1	3	2	2	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-3

PART B

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	3	1	1	2	2	1	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN		_	
M = Marks Hr = Practical Hours CO = Course Outcomes			
Unit	Μ	Hr	CO
1 General Safety, Housekeeping, Fire Fighting & First Aid		06	
1.1Introduction to General Safety aspects of engineering workshop			CO1
1.2 Meaning and importance of housekeeping.			
1.3 Fire hazards, fire triangle, types of fire extinguishers – selection			
and use.			
1.4Basic knowledge of first aid with specific inputs on cuts, burns,			
electric shocks, artificial respiration, handling emergencies.			
2 Fitting Workshop Practice		18	
2.7 Introduction to the trade.			CO1
2.8 Introduction to various hand Tools, Measuring and Marking			CO2
Tools, cutting tools, Holding tools, Striking tools			CO3
2.9 Types of files and filing methods.			
2.10 Drill bits and drilling Processes, using portable and pillar			
drilling machine.			
2.11 Operations performed in fitting shop such as measuring,			
marking, chipping, filing, grinding, sawing, drilling			
2.12 Threading using taps and dies. 3 Carpentry Workshop Practice	20	18	
3.10 Introduction to carpentry	20	10	CO1
3.11Types of wood and its characteristics, forms of wood, defects in			CO1 CO2
timber and its identification, wood working hand tools			CO2 CO3
3.12 Wood working processes.			005
3.13 Different types of joints and their usage.			
3.14 Introduction to wood working machines:			
a. Lathe			
b. Circular saw			
c. Band saw			
d. Wood planner			
e. Universal wood working machine			
4 Electrical Workshop Practice	30	32	
4.1 Brief introduction to power distribution and Electrical Safety.			CO1
4.2 Use of different hand tools used in electrical trade			CO2
4.3 Collection of details of motors and transformers.			CO3
4.4 Introduction to Control Panel and its various			CO4
sections/components.			
4.5 Making of wire joints.			
4.6Measurement of current, voltage, frequency and Power Consumption.			
4.7 Connecting and starting of Induction Motor & Measurement of			
its speed. Changing of Direction of rotation of induction motor.			
4.8 Introduction to commonly used electrical Fittings (Domestic &			
Industrial).			
4.9Wiring of Simple Electric Circuit (Bulb & plug point and			
switches) on wooden board			
4.10 Study, connection & use of Energy Meter			
4.11Testing of components using Series test lamp & Multimeter			
4.12Study of Fuses & practice replacement of Fuse			
4.13 Study & Troubleshooting of Tube Light			
5 Plumbing		06	

 5.1 Plumbing tools, pipe fittings and method of joining pvc pipes. 5.2 Use of spirit level and plumb bob. 5.3 Minor repairs and replacement of fittings. 5.4 Reading of plumbing drawings. [Note: Plumbing restricted to domestic plumbing and pvc piping.] 		CO1 CO2 CO3
Total	80	

6. COURSE DELIVERY:

The Course will be delivered through workshop practical sessions in mechanical and electrical workshops. **7. SPECIFICATION TABLE FOR PRACTICALS/ MACRO-LESSON PLAN**

Unit No	Unit	Number of hrs.	Marks
1	General Safety, Housekeeping, Fire Fighting & First Aid		10
2	Fitting Workshop Practice		30
3	Carpentry Workshop Practice		20
4	Electrical Workshop Practice		30
5	Plumbing		10
	Total		100

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Hrs.
1	General Safety, Housekeeping, Fire Fighting & First Aid	06
a	Demonstration on use of Safety Measures while working in Workshop and	03
	use of safety signs.	
b	Demonstration on use of First Aid and Artificial Respiration procedure	03
	,Training on fire and emergency services (using video presentation /fire and	
	safety expert talk)	
2	Fitting Workshop Practice	18
a	Identification of various hand Tools, Measuring and Marking Tools,	03
	cutting tools, Holding tools, Striking tools	
b	Identification of various types of files and demonstration on filing methods.	03
с	Identification of various types of Drill bits, taps, dies and Drilling machines	03
	such as portable and Pillar Drilling machine.	
d	Job involving filing, marking, cutting operation on MS Flat.	06
e	Job involving Drilling and Tapping operation on MS flat.	03
3	Carpentry Workshop Practice	18
a	Identification of various types of woods and wood working hand tools	03
b	Identification of various types of Carpentry joints and their usage.	03
с	Introduction to wood working machines such as wood working Lathe,	03
	Circular saw ,Band saw, Wood planner, Universal wood working machine	
d	Job involving marking, measuring, planning, sawing, chiseling, joint	06
	preparation and assembly of wooden blocks.	
e	Preparation of job on wood working lathe.	03
4	Electrical Workshop Practice	32
a	Measurement of Single Phase and Three Phase supply Voltage using	02
	multimeter.	
b	Identification of various hand tools used in electrical trade.	02
С	Measurement of electric circuit parameters using Ammeter, Voltmeter,	04

Directorate of Technical Education, Goa State

	Frequency meter, Wattmeter.	
d	Making of Straight and T wire joints.	02
e	Testing of electrical components such as Choke, starter, Fuse, Switch using	02
	Series Test lamp and Multimeter	
f	Starting of induction motor using DOL Starter	02
g	Reversal of direction of rotation of Three phase induction motor	02
h	Identification of commonly used electrical fittings.	02
i	Wiring of simple electrical circuit using bulb and socket.	04
j	Measurement of Energy using Energy Meter.	02
k	Identification of Different types of Fuses and their replacement in circuit.	02
1	Testing of various components and connection of Tube light circuit.	02
m	Collecting Name plate Details of Motors and Transformers and operating	04
	and controlling speed of motor from Control panel.	
5	Plumbing	06
a	Identification of Plumbing tools and pipe fittings, Reading of plumbing	03
	drawings, methods of joining PVC pipes, use of spirit level and plumb bob in piping.	
b	To carry out minor repairs and replacement of fittings.	03
Ŭ	10 cm j out minor repairs and repracement of mainfor	00

9. LEARNING RESOURCES TEXT BOOKS

	IEAT BOOKS						
S.	Author	Title of Books	Publishers				
No.							
1	N. Sesha Prakash	Manual of Fire Safety	CBS Publishers and				
			Distributers				
2	S.K. Hajara-	Workshop Technology	Media Promoters				
	Chaudhary						
3	B.S. Raghuwanshi	Workshop Technology-	Dhanpat Rai and sons, New				
	_		Delhi				
4	R K Jain-	Production Technology	Khanna Publishers, New				
			Delhi				
5	H. S .Bawa	Workshop Technology	Tata McGraw Hill				
			Publishers, New Delhi				
6	Kent	Mechanical Engineering	John Wiley and Sons, New				
		Hand book	York				
7	B.L. Theraja	Fundamentals of	S. Chand – New Delhi				
		Electrical Engineering and					
		Electronics					

REFERENCE BOOKS FOR FURTHER STUDY

S. No.	Author	Title of Books	Publishers
1	CIMI- Central	Turner – Trade Theory – Ist and	Wiley Eastern Ltd.
	Instructional Media	IInd Year	New Delhi
	Institute Madras		

(GC201) ENGINEERING MATHEMATICS II

1. COURSE OBJECTIVE:

The course is aimed at providing mathematical knowledge, developing computational skills and reasoning. It also helps students to think logically and in systematic manner so as to grasp mathematical concepts easily. It helps to build analytical thinking which play an important role in solving real world problems in all scientific discipline.

2. TEACHING AND EXAMINATION SCHEME

Semester II									
Course code &	Peri	ods/W	eek	Total	Exam	ination	Scheme	9	
course title	(in h	iours)		hours	Theor Marks	-	TERI WOR		Total Marks
(GC201)	L	Τ	P	H	TH	TM	TW	PR/OR	
Engineering Mathematics II	4	2	-	96	75	25	25	-	125

3.COURSE OUTCOMES:

GC201.CO1: Understand the basic principles of Matrices ,Integration, Determinants and Vectors in engineering problems.

GC201.CO2: Interpret the formulae to solve problems of Matrices ,Integration, Determinants and Vectors.

GC201.CO3: Apply appropriate mathematical methods for solving engineering problems.

GC201.CO4: Analyse the knowledge of Matrices ,Integration, Determinants and Vectors for various Engineering applications.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	3	1	1	2	0	2	2
CO2	3	1	1	2	0	2	2
CO3	2	2	2	3	1	2	2
CO4	1	3	2	3	1	2	2

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives			
Unit			Ma rks	Th r	СО
1 .DETERM	IINANTS AND MATRIC	ES	15	12	CO1, CO2,
1.1 Determinants : Definition & order of determinant, value of determinant, properties of determinants(no question), Cramer's rule for solving equations with two & three variables			7	4	CO2, CO4
Equa	lity of matrices, addition &	of matrix, types of matrices, t subtraction, multiplication of a matrix, solution of linear	8	8	

		1	
equations with two & three variables using matrices			
2.INTEGRATION	20	22	CO1,
			CO2,
Definition, Standard Formulae, properties of Integration for sum,			CO4
difference and scalar multiplication,			001
integration of algebraic, trigonometric, inverse trigonometric,			
exponential, logarithmic, composite function, Integration by			
substitution, integration by partial fraction, integration by parts			
3 .DEFINITE INTEGRALS	10	08	CO3
	_		
Definition of definite integral and Properties of definite integral			
,integration by parts			
Applications: Area under the curves & lines and area between the			
curves and Volumes (simple problems)			
4.VECTORS	15	12	CO1,
Definition of apploan & yesters, a suplity of			CO2,
Definition of scalars & vectors, equality of vectors,			CO4
Addition & subtraction of vectors, triangle, parallelogram laws for			
addition, position vector, dot product & cross product and their			
properties and applications, relation between dot and cross product			
and scalar triple product and applications			
5 .STATISTICS / COMPLEX NUMBERS	15	10	CO3
	_		
Statistics : (ME and Allied courses only)			
5.1:Measures of central Tendency -mean, median, mode for			
ungrouped & grouped data			
5.2:Measures of dispersion –Range, mean deviation, standard			
deviation, variance, coefficient of variation			
5.3: Corrected mean and relation between standard deviation and			
mean.			CO3
5.Complex Numbers (electronics and Allied courses only)			
5.1:Definition of complex number and Argand diagram, equality of			
complex numbers,			
5.2:powers of 'i' ,complex conjugates,			
5.3:Addition& subtraction of complex nos. Multiplication& division			
of complex nos.			
5.4: Modulus and argument of a complex number			
5.5:Polar form & exponential form of complex no.			
5.6: De Moivre's theorem., nth root of complex nos.			
5.7:Hyperbolic, exponential, circular functions			
Total	75	64	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No	Unit	Number of lectures	Marks
1	Determinants & Matrices	12	15
2	Integration	22	20
3	Definite Integrals	08	10
4	Vectors	12	15
5	Statistics /Complex Number	10	15
	Total	64	75

- Tutorial books should be maintained by students (5 marks)
- Two home assignments per semester (5 marks)

The Two assignments each comprises of thirty questions which includes 15 short questions and fifteen long questions. First assignment will cover fifty percent of syllabus

and second assignment will cover remaining portion of syllabus

• Topic-wise class assignment (15 marks)

Class assignment comprises of ten short and ten long questions.

9. LEARNING RESOURCES Text Books /reference books

ICAU	Text Books /Telefence books						
S. No.	Title of Books	Author	Publishers				
1	MathematicsforPolytechnic5Students(Basic4Mathematics)4	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune				
2	Mathematics for Polytechnic Students(Engineering Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune				
3	Applied Mathematics	S.B. Gore, M.B.Patil, S.P. Pawar	Vrinda Publications				

Reference Books for further study

S. No.	Title of Books	Author	Publishers
1	Applied Mathematics I	Dr. U.B.Jangam, K.P. Patil, Nalini Kumthekar	Nandu Printers& Publishers Pvt. Ltd. Mumbai
2	Applied Mathematics for Polytechnics	H.K. Dass	CBS Publishers & Distributers Pvt. Ltd. Pune
3	Advanced Engineering mathematics	H.K. Dass	S. Chand

(GC 202) APPLIED PHYSICS- II

1. COURSE OBJECTIVE:

On successful completion of the course, Students completing the Applied Physics II course will be able to demonstrate competency and understanding of the basic concepts found in, Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light and Optics and Sound, and will be able to utilize the knowledge to demonstrate competency with experimental methods that are used to discover and verify the concepts related to content knowledge.

2.TEACHING AND EXAMINATION SCHEME

Semester	II									
Course code &		Periods/Week		Total		Examination Scheme				
course title	course title (in hours)		irs)	Hours	Theory Marks		Practical Marks		Total Marks	
(GC202) App	lied	L	Т	Р	Н	TH	TM	TW	PR/OR	
Physics- Il	[03	0	02	80	75	25	25	-	125

3. COURSE OUTCOMES:

GC202.CO1: Understand the Fundamental Concepts of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound.

GC202.CO2: Explain the basic principles of Electrostatics, Current Electricity, Electromagnetism and Electro Magnetic Induction, Light, Optics and sound.

GC202.CO3: Apply the knowledge of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound to specific applications.

GC202.CO4: Compute various parameters in the field of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound.

4. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Relationship : 1. Shight (Low) 2. Woderate (Wednam) 5. Substantial (High)								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability& Environment	Project Management	Life -long Learning	
CO 1	3	3	1	1	2	0	3	
CO 2	3	3	1	1	2	0	2	
CO 3	3	2	3	3	3	1	1	
CO 4	2	2	2	3	1	1	1	

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives						
Unit	Μ	Th	CO			
		r				
1 UNIT NAME: ELECTROSTATICS	12	8	CO1,			
1.1 Coulomb's law, Electric field,			CO2,			
1.2 Electric field Intensity, Electric lines of force and properties			CO3,			
1.3 Electric potential, Definition of Absolute potential						
1.4, Potential difference, Potential of sphere,						

Directorate of Technical Education, Goa State

15 Detertial of conthe	T		
1.5 Potential of earth.			-
1.6 Capacitance,			4
1.7 Capacitors in Parallel Derivation of Expression			_
1.8. Capacitor in series Derivation Of Expression			
2. UNIT NAME: CURRENT ELECTRICITY	20	12	CO1, CO2,
2.1 Definition of Electric Current and its Unit, Ohm's Law, Resistance,			СОЗ,
2.2 Factors on which resistance depends, Specific resistance. Effect of			CO4
temperature on resistance			
Temperature coefficient of resistance,			
2.3 Resistances in Series and parallel			
2.4 EMF and Internal resistance of cell			
2.5 General Equation of ohm's law.			
2.6. Wheatstone's Network and Principle of Meter Bridge			
2.7 Principle of Potentiometer (V α L) and Applications to compare EMF of			
given cells by single cell method and sum difference method			
2.8 Determination of Internal resistance of a cell using potentiometer.			
2.9 Electric Power and Electric Energy, KWh			
2.10 Calculation of Energy bills			
2.11 Heating Effect of Electric current. Joule's law.			
2.12 Applications in house hold appliances			
3. UNIT NAME: ELECTROMAGNETISM AND EM INDUCTION	16	10	CO1,
3.1 Magnet, Magnetic field, Magnetic flux, and magnetic flux density and			CO2,
its unit			СОЗ,
3.2 Magnetic effect of Current, Oersted's Experiment, Right hand Thumb			CO4
Rule, Biot Savart law			
3.3 Magnetic field at the center of the coil (no derivation), Magnetic field			
due to coil (Qualitative discussion only			
3.4 Electromagnet. Force acting on a current carrying conductor placed in			
magnetic field and expression (no derivation)	ļ		
3.5 Fleming's left-hand rule. Electromagnetic Induction. Faraday's			
Experiment			_
3.6. Faraday's laws Lenz's law. Self-Induction and Mutual Induction.	ļ		4
3.7 Transformer Principle.	ļ		_
3.8 Step up and Step-down transformer.	-		_
3.9 Induction Heating	ļ		_
3.10 Induction heater and uses			
4. UNIT NAME: LIGHT AND OPTICS	16	10	CO1,
4.1 Frequency Range of Infrared, ultraviolet and visible light and their uses	-		CO2,
4.2 Reflection, Refraction, Snell's law, refractive index.	-		CO3,
4.3 Refraction through glass slab and prism.	-		CO4
4.4 Total Internal reflection applications in optical fibers.	-		_
4.5 Advantages of optical fibers. LASER, sources and applications.	-		4
4.6. Luminous Intensity, Intensity of Illumination			4
4.7 Inverse square law of Illumination (No derivation)			_
4.8 Principle of Photometry, X rays,			4
4.9 Production of X Rays by Coolidge tube			
4.10 Properties and applications			
5. UNIT NAME: SOUND	11	08	CO1,
5.1 Sound as longitudinal wave, wavelength, frequency, time period,			CO2,
amplitude,			CO3,

Directorate of Technical Education, Goa State

5.2 Free vibration force vibration, resonance, examples,		CO4
5.3 Echo reverberation ,pitch loudeness,intensity of sound,		
5.4 Ultrasonic waves, Piezo electric effect, Principle of Production of ultra-		
sonics waves		
5.5 Application of Ultra sonics in finding depth of sea,		
5.6. Detection of flaws in metal, soldering, Drilling,		
5.7 Ultrasonic Cleaning		
5.8Ultrasound for medical purposes.(Just Uses)		

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit No	Unit	Number of lectures	Marks
1	ELECTROSTATICS	8	12
2	CURRENT ELECTRICITY	12	20
3	ELECTROMAGNETISM AND EM INDUCTION	10	16
4	LIGHT AND OPTICS	10	16
5	SOUND	8	11
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS

No	Practicals	Marks
1.	Specific Resistance by Ammeter Voltmeter Method	25
2	Specific Resistance by Meter Bridge Method	25
3	To Verify the Series Law of Resistance by Meter Bridge Method	25
4	To Verify the Parallel Law of Resistance by Meter Bridge	25
	Method	
5	To Compare the emf of two cells by single cell method	25
6	To find the internal resistance of a cell by Potentiometer Method	25
7	To find the velocity of sound by Resonance Tube method	25
8	To find the Refractive index	25
	Total (Average)	25

9. LEARNING RESOURCES Text Books

S. No.	Author	Title of Books	Publishers
1	B G Dhande	Applied Physics of Polytechnics	Pune Vidyarthi Griha
		II Jan	Prakashan
2	Bhandarkar	Applied Physics of Polytechnics	Vrinda publication
3	R K Gaur and S L	Engineering Physics	Dhanpat Rai & Sons
	Gupta		Delhi
4	Dr. Vasudev R	A Text Book of Applied Physics for	Broadway Publishing
	Bhagwat	Polytechnics	House
5	B L Thereja	Engineering Technology	S. Chand
Referen	ce Books for further st	udv	•

S. No.	Author	Title of Books	Publishers
1	Halliday D and	Physics Part I-II	Wiley Eastern Ltd.
	Resnick		
2	Satish k. Gupta	ABC of Physics I&II	Modern Publisher
3	Saxena HC and	Applied Physics Vol I & II	S. Chand Publisher
	Singh Prabhakar		

(GC203) ENVIRONMENTAL STUDIES

1. COURSE OBJECTIVE:

Environment is the nurturing force upon which we depend. It decides our well being, our health & quality of our life. The environment is deteriorating at an alarming rate due to increasing human activity and can be saved only by timely human action. The aim of Environmental studies is to sensitize the students towards the need to conserve & protect natural resources & biological support systems. With the aim to develop an attitude of concern for the environment the students will learn to choose environmentally friendly options for sustainable development and live in harmony with nature.

2. TEACHING AND EXAMINATION SCHEME :

Semester	Ι									
	Course code & Periods/Week course title (in hours)			Total Credits		Exai	ninatior	n Scheme		
		(-				Theory Marks		Practical Marks		Total Marks
(GC203 Environme	·	L	Т	Р	Н	TH	TM	TW	PR/OR	
Studies		04	-	-	64	75	25	-	-	100

3. COURSE OUTCOMES:

GC203.CO1: Understand the role and importance of various elements of Environment.

GC203.CO2: Identify the concerns related to the natural resources, ecosystems, biodiversity, pollution and social issues of environment.

GC203.CO3: Develop sensitivity towards Environmental issues.

GC203.CO4: Co-relate causes affecting the environment & biodiversity.

4. Mapping Course Outcomes with Program Outcomes :

4. Mapping Course Outcomes with Frogram Outcomes.									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7		
	Basic & Discipline Specific	roble naly	Design and Devlopmen t of	Engg. Tools, Experiment	Engg. Practices for Society,Sus tainability	Project Manageme nt	Life -long Learning		
CO1	2	1	1	0	3	2	2		
CO2	2	1	1	0	3	2	2		
CO3	1	1	1	0	3	2	2		
CO4	1	1	2	0	3	2	2		
5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN **M** = Marks | Thr = Teaching hours | CO = Course Objectives Mk Thr Unit CO1, CO3, S **UNIT 1.0 : Multidisciplinary Nature of Environmental Studies** 1.1 Environmental studies : Definition , Scope and Importance 09 08 **CO4** 1.2 Need for Public Awareness 1.3 Environment & Human Health 1.4 Environmental Ethics 1.5 Value Education 1.6 From Unsustainable to Sustainable Development : Concept and Guidelines 1.7 Concept of Environmental Audit (EA) Environment Impact Assessment (EIA) 1.8 Ecological Foot Prints UNIT 2.0: ECOSYSTEM AND BIODIVERSITY 15 13 CO1, CO2, CO3, 2.1 Ecosystem **CO4** 2.1.1Concept, Structure & functions of ecosystem (Function of producer, consumer and decomposer) 2.1.2 Food chain & Food web- Concept & Examples 2.1.3 Energy flow in Ecosystem 2.1.4 Ecological Pyramids (Inverted & Upright) Pyramid of Number, Biomass & Energy. 2.1.5 Ecological Succession (Primary & Secondary Succession) 2.1.6 Study of Ecosystem: characteristic features structure and functions) Terrestrial(Forest, Grassland, Desert) Aquatic(Pond, River & Ocean) 2.2 Biodiversity 2.2.1 Definition of Biodiversity 2.2.2. Types of Diversity (Genetic, Species & Ecosystem) 2.2.3. Value of Biodiversity (Consumptive, Productive, Social ,Aesthetic Moral & Optional value) 2.2.4 India as a Mega- diversity Nation 2.2.5 Biogeographical classification of India 2.2.6 Extinct, Endangered, Threatened & Endemic Species -Examples (of India) 2.2.7 Threats to Biodiversity (Habitat loss, Poaching of Wild life & Man Wildlife Conflict) 2.2.8 Reasons for loss of Biodiversity 2.2.9 Conservation of Biodiversity (Insitu & Exsitu conservation) **UNIT 3.0 : NATURAL RESOURCES** 18 15 CO1, 3.1 Forest Resource CO2, 3.1.1 Direct & Indirect value of Forest CO3, 3.1.2 Deforestation-causes & effects **CO4** 3.1.3 Forest Management 3.2 Water Resource 3.2.1 Water as a scarce Resourc 3.2.2Use and over exploitation of surface and ground water

Directorate of Technical Education		u otu	
3.2.4 Construction of dams- Benefits and draw backs			
(Rehabilitation & Resettlement of people)			
3.2.5 Rain water Harvesting.			
3.2.6 Watershed Management			
3.2.7 Conflicts over water in India			
3.3 Energy Resource			
3.3.1 Renewable & Non-Renewable sources of Energy			
3.3.2 Growing Energy Needs.			
3.3.3 Alternate Source of Energy (Solar ,Wind, Bio, Geothermal,			
Hydro & Nuclear Energy)			
3.4 Food Resource			
3.4.1 Sources of Food			
3.4.2 World Food Problems (Undernourishment & Malnourishment)			
3.4.3 Changes caused by agriculture & overgrazing			
3.4.5 Effects of modern agriculture on environment			
(use of synthetic fertilizers & synthetic pesticides in agriculture)			
3.5 <u>Mineral Resource</u>			
3.5.1 Types of Minerals			
3.5.2 Use & Overexploitation of Minerals			
3.5.3 Environmental Impact of Mining.			
3.6 Land Resource			
3.6.1 Pattern of Land Utilization (In India and World)			
3.6.2 Land Degradation – Causes & Control Measures			
UNIT 4.0 : ENVIRONMENTAL POLLUTION- Sources, Effects &	24	20	
Control Measures			001
/ A tr Pollution			CO1,
4.1 <u>Air Pollution</u>			(4 4 7 2
4.1.1 Definition, sources of air pollution(Primary and Secondary air			CO2,
4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples)			CO3,
4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples)4.1.2 Effects on human health, animals, plants & Materials			
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect & Global Warming. Ozone layer Depletion, Acid Rain. 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect & Global Warming. Ozone layer Depletion, Acid Rain. 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect & Global Warming. Ozone layer Depletion, Acid Rain. 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect & Global Warming. Ozone layer Depletion, Acid Rain. 4.6 Noise Pollution :- 4.6.1 Definition. 4.6.2 Sources of Noise Pollution 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect & Global Warming. Ozone layer Depletion, Acid Rain. 4.6 Noise Pollution :- 4.6.1 Definition. 4.6.2 Sources of Noise Pollution on Human health (Noise Induced 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect & Global Warming. Ozone layer Depletion, Acid Rain. 4.6 Noise Pollution :- 4.6.1 Definition. 4.6.2 Sources of Noise Pollution on Human health (Noise Induced hearing loss, Physiological & Psychological Effects) 			CO3,
 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect & Global Warming. Ozone layer Depletion, Acid Rain. 4.6 Noise Pollution :- 4.6.1 Definition. 4.6.2 Sources of Noise Pollution on Human health (Noise Induced 			CO3,

4.7. <u>Nuclear Pollution / Radioactive Pollution:-</u>			
4.7.1 Definition			
4.7.2. Sources of nuclear Pollution (Natural & Man made)			
4.7.3. Effects of Nuclear Pollution			
4.7.4. Control of Nuclear Pollution			
4.7.5.Disposal of Nuclear waste (Low, Medium & High activity waste)			
4.7.6 Nuclear Accidents & Holocaust – case study			
4.8 Solid Waste Pollution.			
Definition: Refuse, Garbage			
Sources of Solid waste			
Types of solid waste (MSW, HW, BMW & EW)			
Effects of Consumerism			
Segregation of Solid waste at source			
Treatment of MSW (Open dumping, Land filling, incineration	&		
composting)			
Waste Utilization (Reuse, Reclaim & Recycle)			
Solid waste Management System – Flow sheet diagram			
bond waste management bystem - 1 low sheet diagram			
4.9 Role of an Individual in Prevention of Pollution.			
UNIT 5.0 : SOCIAL ISSUES & ENVIRONMENT	09	08	CO2,
UNIT 5.0. SOCIAL ISSUES & ENVIRONMENT	09	00	CO2, CO3,
5.1 Environmental Legislation			CO3, CO4
Article 47 & Article 51-A(g)of the constitution on Environment.			04
5.1.1 Protection			
Functions of Ministry of Environment and Forest Govt. of India			
	trol		
Objectives & Functions of Central & state pollution Con Boards	101		
Doarus			
Environmental Protection Act.			
Air (Prevention & Control of Pollution) Act.			
Water (Preventation & Control of Pollution) Act.			
Wildlife Protection Act.			
Forest Conservation Act.			
Motor vehicle Act.			
5.2 Social Issues			
5.2.1Women & Child Welfare			
5.2.2 Role of IT in Environment & Human Health			
5.2.3 AIDS			
5.2.4 Population Growth & Variation among Nations			
5.2.5 Human Rights			

COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of lectures	Marks
1	MULTI-DISCIPLINARY NATUR ENVIRONMENTAL STUDIES	E OF	08	09
2	ECOSYSTEM AND BIODIVERSITY		13	15
3	NATURAL RESOURCES		15	18
4	ENVIRONMENTAL POLLUTION		20	24
5	SOCIAL ISSUES & ENVIRONMENT		08	09
		Total	64	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS 9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Erach Bharucha	Textbook of Environmental Studies	Universities Press
			(India) Private Ltd.
2	Dr. Suresh K.	Environmental studies	S.K. Kataria & Sons
	Dhameja		
3	Y. Anjaneyulu	Introduction to Environmental	B.S Publications
		Science	
4	S. Deswal & A.	A Basic Cource in Environmental	Dhanpat Rai & Co.
	Deswal	Studies	
5	P. Meenakshi	Elements of Environmental Science	Prentice Hall of India
		and Engineering	(PHI)

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Pandya and Camy	Environmental Engineering	Tata McGraw Hill
2	Asthana D.K. and	Environmental Problems and	S. Chand & Co.
	Asthana Meera	Solutions	
3	Gilbert M. Masters	Introduction to Environmental	Prentice Hall of India
		Engineering and Science.	(PHI)
4.	M N Rao & HVN	Air Pollution	Tata McGraw Hill
	Rao		

FIELD ACTIVITIES (OPTIONAL)

1. Visit to Selaulim/ Anjunem Dam.

 Visit to show Hill cuttings, mining areas.
 Visit to show Rain water harvesting project / Vermicomposting plant / watershed management project. Krishi Vigyan Kendra – Old Goa)
Visit to Garbage treatment plant.
*On Completion of visit Report to be submitted.

(

(GC204) ENGINEERING DRAWING

1. Course Objective: Drawing is a graphical language of engineering field. Engineering technician irrespective of his/her field of operation in an industry is expected to possess a thorough understanding of drawing, which includes visualization of objects and the proficiency in reading and interpreting a wide variety of engineering drawings. It is the skill, which translates an engineering idea into lines and dimensions. Besides this he/she is also expected to possess a certain degree of drafting skills- depending upon his/her job.

2. TEACHING AND EXAMINATION SCHEME:

Course Code &	Periods/			Total		Exai	nination S	cheme	
Course Title	Week (In Hours)		Course Title Theory Marks		Practical Marks		Total Marks		
(GC204)	L	Т	Р	Н	ТН	ТМ	TW	PR/OR	
Engineering Drawing	-	-	5	80	-	-	50	50	100

3. Course Outcomes:

On successful completion of the course the student will be able to:

GC204.CO1: Understand different methods of projection, sectioning of solids and development of surfaces.

GC204.CO2: Select the relevant procedural methods for preparing Engineering Drawing.

GC204.CO3: Draw Isometric views and orthographic projection of full and sectioned objects and development of surfaces

GC204.CO4: Examine and Interpret Engineering Drawings

4. Mapping Course Outcomes with Program Outcomes

Relationship- 1:Slight (low) 2:Moderate(Medium) 3: Substantial(High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	Basic and discipline specific knowledge	Problem analysis	Design & developm ent of solution	Engg tools exptn and & testing	Engg Practice for society,susta inability and environment	Project manage ment	Lifelong learning
CO1	3	2	1	3	1	1	1
CO2	3	1	2	3	1	2	2
CO3	2	2	2	3	1	2	2
CO4	2	2	2	2	1	2	3

5. Detailed course Contents/ Micro lesson plan

M=Marks Prhr= Teaching Hrs CO=Course Outcor	nes		
Unit	Mark	Prhr	CO
 Introduction 1.1 Importance of engineering drawing as a means of communication. 1.2 Planning of drawing sheet as per SP 46(latest revision) 1.3 Indian standard practices of laying out and folding of drawing 1.4 Different types of lines used in engineering drawing. 1.5 Importance of scale in Engineering Drawings. 1.6 Lettering 1.7 Methods of dimensioning, Dimensioning terms and notation -use of SP 46(latest revision), General rules for dimensioning, Dimensioning of cylinder, holes, arcs of circle, narrow space, angles, countersunk hole, taper. 	05	05	CO2
 2. Geometrical construction & Engineering Curves 2.1Construction of an Equilateral and Isosceles triangle, Square, Regular pentagon & Regular hexagon given length of a side using general method of construction 2.2Construction of Engineering curves like: Ellipse- by focus & directrix method and arcs of circles method Parabola- by focus & directrix method and rectangle method Hyperbola- Focus and directrix method 2.3 Cycloid- by generating circle rolling on a straight line 2.4 Involutes of a circle. 2.5 Draw normal & tangents to the above curves from given point on the curve Curves to be explained with the help of applications. 	05	15	CO2
 3. Orthographic projection 3.1 Definitions of various terms associated with orthographic projections. Planes of projections. Concept of Quadrants. 3.2 First and third angle method of projection. 3.3 Projection of points 3.4Projection of lines Parallel to both Principal planes 	18	30	CO1, CO2, CO3, CO4

Parallel to one and Perpendicular to other Principal plane.			
Inclined to one plane and parallel to other plane.			
3.5 Projection of planes:Triangle, Square, circle when inclined to one principal plane & perpendicular to other plane.3.6 Projection of solids: Cylinder, cone.			
Right regular solids such as			
 (i) Prism: Square& Pentagonal (ii) Pyramid: Triangular & Square. Projections of above mentioned solids when axis is inclined to one principal plane & Parallel to other principal plane. 			
3.7 Conversion of simple pictorial views into orthographic views.			
Problems where one end of the line is in one quadrant & other end in other quadrant and traces are to be excluded.			
Problems where apparent shape of plane are given, true shape & slope angle are to be drawn are excluded.			
4. Section of solids Development of lateral surfaces	10	15	CO1,
4.1 Concept of sectioning planes, Auxiliary planes and true shape of section.			CO3
4.2 Drawing section of solids like square prism, square pyramid, cylinder and cone with sectioning plane inclined to one principal plane and Perpendicular to the other principal plane (Axis of solid perpendicular to one principal plane and parallel to the other)			
4.3Concept and importance of surface development in the engineering field. Methods of development of surfaces-Radial & Parallel line method. Development of surfaces for solids like square prism, square pyramid, cylinder and cone.			
Development of solids standing on its base & cut by a plane inclined to HP and perpendicular to VP is also included.			
5. Isometric Views	12	15	CO3,
5.1Difference between Isometric projection & Isometric view.			CO4
5.2Isometric view of geometrical planes and solids.			
5.3Conversion of orthographic views into isometric views.			
5.4Construction of Isometric view for any real object.			
Total	50	80	
L	l	1	

6. Course Delivery:

The course will be delivered through Practicals, class room interaction and exercises.

7. Specification table for Practical/Macro Lesson Plan

Unit No.	Unit	No. Of Practical Hrs.	Marks
1	Introduction	05	05
2	Geometrical construction & Engineering Curves	15	05
3	Orthographic projection	30	18
4	Section of solids Development of lateral surfaces	15	10
5	Isometric Views	15	12
	Total	80	50

8. Specification table for Practical/ Termwork:

No.	Practical
1	TYPES OF LINES, LETTERING, DIMENSIONING.
2	GEOMETRICAL CONSTRUCTIONS
3	ENGINEERING CURVES
4	PROJECTION OF POINTS & LINES
5	PROJECTION OF PLANES
6	PROJECTIONS OF SOLIDS
7	ORTHOGRAPHIC PROJECTIONS (First angle)
8	ORTHOGRAPHIC PROJECTIONS(Third angle)
9	SECTIONS AND DEVELOPMENT OF SOLIDS
10	ISOMETRIC VIEWS

9. Learning Resources:

Text Books

S.No.	Author	Title	Publisher
1	N.D. Bhatt	Engineering Drawing	Charoter Publisher, Anand
2.	R. K. Dhawan	Engineering Drawing	S. Chand Publishing
3.	K.R. Gopalakrishna	Engineering Drawing	Subhas Publications.

Reference Books only for further study

S.No.	Author	Title	Publisher
1	P.S. Gill	Geometrical Drawing	Kataria & Sons
2	P.S. Gill	Machine Drawing	Kataria & Sons
3	N.D. Bhatt	Machine Drawing	Charoter Publisher, Anand

Indian and International codes needed

S.No.	Author	Title	Publisher
1.	BIS, India	SP 46. (Latest revision).	BIS, India

(GC205) ENGINEERING MATERIALS

1. COURSE OBJECTIVE:

This course is introduced with an objective of providing knowledge to students regarding properties and composition of materials for engineering applications and enabling them to make comparative study of materials while selecting the appropriate material for various engineering applications.

2. TEACHING AND EXAMINATION SCHEME

Semester	II									
Course co	de &	Per	riods/	Week	Total	Examination Scheme				
course t	course title		(in hours)		Hours	Theory		Practical		Total
						Marks		Iarks Marks		Marks
(GC20	5)	L	Т	Р	Н	TH	TM	TW	PR/OR	
ENGINEE	RING	3			48	75	25			100
MATERI	ALS									

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

GC205.CO1: List out the properties of materials used in engineering applications.

GC205.CO2: Explain the composition and properties of various engineering materials.

GC205.CO3: Classify materials based on composition and properties.

GC205.CO4: Select the appropriate material/s for the given engineering application/s.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability & Environment	Project Management	Life -long Learning
CO1	3	2	0	0	0	0	1
CO2	3	2	1	0	0	0	1
CO3	2	2	2	1	1	0	1
CO4	2	3	3	2	1	0	1

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN	-	_	
M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	CO
1 INTRODUCTION TO ENGINEERING MATERIALS	08	04	
1.1 Classification of Materials: Metal and Non-metal, Ferrous Metal & Non-			CO1,
ferrous Metals, Differences between Metals & Non-metals			CO2,
1.2 Properties of Materials:(Note: Properties to be explained with relevant			CO3,
examples.)			CO4
1.2.1 Physical properties – Melting point, Freezing point, Boiling point,			
Density, Linear co-efficient of expansion, Thermal conductivity, Electrical			
resistivity			
1.2.2 Mechanical properties – Strength, Elasticity, Plasticity, Ductility,			
Malleability, Toughness, Brittleness, Hardness, Fatigue, Creep.			
1.2.3 Electrical properties – Resistivity, Conductivity, Temperature coefficient			
of resistance, Dielectric strength, Thermo-electricity, Super conductivity			
1.2.4 Magnetic properties – Permeability and Coercive force			
1.2.5 Chemical properties - Corrosion resistance and Chemical composition			
2 FERROUS & NON-FERROUS METALS & ITS ALLOYS	18	12	
2.1 FERROUS ALLOYS:			CO1,
1.1.1 Low carbon steel, Medium carbon steel, High carbon steel, their carbon percentage, properties & uses.			CO2,
1.1.2 Cast iron: grey cast iron, white cast iron, their properties & uses			CO3,
1.1.3 Alloy steels: Constituents of alloy steels such as Phosphorous,			CO4
Sulphur, Silicon, Manganese and their effect on properties of			
materials.			
1.1.4 Stainless steel, Nickel-chromium-molybdenum steel, its properties			
& uses.			
1.1.5 Tool steel – composition, HSS, properties & uses 2.2 NON-FERROUS METALS & ALLOYS:			CO1,
2.2.1 Aluminium – Properties & uses			CO1, CO2,
2.2.2 Aluminium alloys – constituents of alloy & their effect on properties of			CO2, CO3,
metal			CO4
2.2.3 Properties & uses of Duralumin, Y-alloy and Al-Si alloy			001
2.2.4 Copper – Properties & uses.			
2.2.5 Copper alloys – Constituents of alloy & their effect on properties of			
metal			
2.2.6 Properties & uses of Copper – Zinc alloys such as Muntz metal,			
manganese, bronze, Copper-Tin alloys such as Bronze, Copper-Aluminium			
alloys such as Aluminium bronzes.			
2.2.7 Lead and its hazard to the environment			
3 NON-METALLIC MATERIALS	18	10	
3.1 CONSTRUCTION MATERIALS			CO1,
3.1.1 Classification of rocks, common building stones and their applications.			CO2,
3.1.2 Cement: Types of cement, composition and applications			CO3,
3.1.3 Bricks: Composition, properties, Classification, Special bricks- Refractory and fly-ash bricks and uses			CO4
3.1.4 Clay: Types, products of clay- tiles and pipes			
3.1.5 Sand- sources – river, crushed aggregates, applications			
3.2 ENGINEERING CERAMICS			
3.2.1 Refractories: Desirable properties, Properties and Applications of Fire			CO1,
clay and Silica Refractory, Difference between acid, basic & neutral			CO1, CO2,
refractories			CO2, CO3,
	l	l	

3.2.2 Glass: Properties & uses of soda glass, borosilicate glass and fibre glass			CO4
3.2.3 Glass wool: Composition, properties & uses			
3.2.4 Timber: Common varieties of timber, uses of wood products, veneer and			
plywood			
3.2.5 Natural & Synthetic abrasive materials: Introduction, Properties & uses			
4 CONDUCTOR, SEMI -CONDUCTOR, AND INSULATING	16	12	CO1,
MATERIALS			CO2,
4.1 Classification of Materials as Conductor, Semiconductor and Insulating			CO3,
materials			CO4
4.2 Conductor Material:			
4.2.1 High conductivity materials: Copper, Aluminium, Carbon, Silver, Lead			
& Tungsten, their properties as conducting materials and applications.			
4.2.2 High resistivity materials: nichrome, constantan, manganin and their			
applications			
4.3 Insulating Materials: Introduction and Characteristics of Good Insulating			
materials			
4.3.1 Solid Insulating materials- wood, paper, rubber, mica, glass fibre,			
porcelain, PVC, resins, their characteristics as insulating materials and			
applications			
4.4 Semiconductor Materials: Silicon & Germanium, their specifications as			
semiconductor material and uses.			
Unit 5 MAGNETIC & COMPOSITE MATERIALS	15	10	
5.1 Magnetic Materials: Classification as Diamagnetic, Paramagnetic,			CO1,
Ferromagnetic, List of these materials and their applications			CO2,
5.2 Composite Materials: metal matrix, ceramic matrix and polymer matrix			CO3,
composites, types of reinforcement materials and their applications			CO4
5.3 Paints & Lubricants:			
5.3.1 Classification: oil based and polymer based paints			
5.3.2 Constituents of Paints – resin, binder, pigment, additives, solvents			
5.3.3 Lubricants – Functions of lubricants, Types of Lubricants, Composition			
and Applications			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures and class room interactions **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit	Unit Name	Number of	Marks
No		lectures (hrs)	
1	Introduction to Engineering Materials	04	08
2	Ferrous & Non-Ferrous Metals & its alloys	12	18
3	Non-Metallic Materials	10	18
4	Conductor, Semi-Conductor, & Insulating Materials	12	16
5	Magnetic & Composite Materials	10	15
		48	75

8. LEARNING RESOURCES Text Books

I ext B	JOKS		
S. No.	Author	Title of Books	Publishers
1	R.S. Khurmi	Material Science	S. Chand
2	R. Srinivasan	Engineering Materials & Metallurgy	Tata McGraw Hill
3	TTTI Madras	Electrical Engineering Materials	McGraw Hill Education, 2004
4	S. K. Hajra Choudhury	Material Science and Processes	Indian book distribution
5	P. C. Varghese	Building Materials	PHI
6		Electrical and Electronic	Katson
	J. B. Gupta	Engineering Materials	

SEMSESTER III (CC301) ENGINEERING MECHANICS

2. COURSE OBJECTIVES:

The students will be able to acquire knowledge of Engineering Mechanics is imperative in the analysis of static or dynamic force systems. The related concepts find extensive applications in the analysis of machine elements, fluids, structures, and every engineering problem that involves force or motion. The subject is a basis of myriads of higher-level subjects like Hydraulics, Strength of Materials, Theory of Machines and Machine Design, and practically there is no branch of engineering where the subject renders no scope.

Semester III Periods/Week Course code & Total Examination Scheme Hours Theory Marks Practical Marks course title (in hours) Total Marks Т Ρ Н TH ТΜ ΤW PR/OR Engineering L Mechanics 125 3 1 1 5 75 25 25 -

2. TEACHING AND EXAMINATION SCHEME

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC301CO1: Define various force systems, Equilibrium, centre of gravity, friction & dynamics.

- CC301CO2: Explain methods to determine unknown reactions, forces, velocities and accelerations, Centroid, centre of gravity, friction machine efficiency, momentum & impulse.
- CC301CO3: Solve problems on equilibrium of rigid bodies, centre of gravity, simple machines, friction, kinetics, momentum & impulse.

CC301CO4: Verify various laws & machine equations.

4. Mapping Course Outcomes with Program Outcomes

	4. Mapping Course Outcomes with Frogram Outcomes								
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PS01	PSO2
CO1	3	1	0	0	0	0	0	1	0
CO2	3	2	1	1	0	1	0	2	1
CO3	3	3	2	1	0	1	2	3	1
CO4	3	3	1	2	1	2	2	2	2

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN		<u> </u>	
M = Marks Thr = Teaching hours			
Unit	М	Thr	CO
1 Forces and Moments.			
1.1 FUNDAMENTALS	3	1	-
Definition and unit of force, types of force, characteristics of force, effects of force, principle	Ŭ		
of transmissibility of force, resultant, equilibrant.			
1.2 FORCE SYSTEM	3	2	
System of forces, resolution and composition of forces (Resolution along x and y axis),			
resolution of force along a plane and perpendicular to it (only introduction, no problems to			CO1 CO2
be framed.)			CO2 CO3
1.3 RESULTANT	6	3	CO4
Application of the principle of resolution to—1) find the resultant of a coplanar, concurrent	Ū	Ū	
force system, and 2) determine the missing force when the resultant is given.			
1.4 MOMENT	6	4	
Moment—Definition, unit, sign convention (clockwise moment +, anticlockwise -), couple			
and its characteristics. Avignon's theorem statement and application to compute the resultant in magnitude, direction and position in case of coplanar non-concurrent, and			
coplanar parallel force system.			
2 Equilibrium.			
2.1 FUNDAMENTALS	3	2	
Concept of equilibrium of forces, conditions of equilibrium of two forces, three forces, concurrent and non-concurrent force systems, concept and drawing of free body diagram for			
not more than three bodies.			
2.2 LAMI'S THEOREM	6	3	CO1
Lami's theorem- statement and application to problems based on strings with suspended			CO2
weights, and spheres.			CO3
			CO4
2.3 BEAMS	6	5	-
Types of beams, types of support, types of loadings. Application of equilibrium conditions to the			
beams (Beams with simple or roller support at the two ends) with concentrated loading, UDL,			
partially applied UDL only.			
3 Centroid and Centre of gravity.			
Definition of centroid, centroid of rectangle, triangle, circle, semicircle, trapezium. Centroid of	9	7	CO1
simple composite figures (including cut out sections.) Definition of centre of gravity. Centre of			CO2
gravity of solids cone, sphere, cylinder, hemisphere, rectangular solid. Centre of gravity of			CO3
simple composite solids (including cut out solid portions)			
4 Friction and Simple machines			
4.1Friction—FUNDAMENTALS	3	1	
Concept of friction, Coulomb's law of static friction, coefficient of friction, angle of friction, cone			
of friction, angle of repose.			

4.2 APPLICATIONS Application of concept of friction to a block resting on horizontal or inclined plane, ladder friction.	6	5	CO1 CO2 CO3
4.3 FUNDAMENTALS OF SIMPLE MACHINES Definition of simple machine, load, effort, mechanical advantage, velocity ratio, efficiency of machine, law of machine, reversibility of machine, self-locking machine. (Simple problems to be framed, no derivations.)	3	2	CO4
4.4 STUDY OF SIMPLE MACHINES Simple axle and wheel, single purchase crab, double purchase crab, screw jack. (Simple problems to be framed, no derivation.)	6	4	
 5 Dynamics 5.1 KINETICS D' Alembert's principle and its applications to solve simple problems related to motion of lift, two bodies connected by a single string passing over a pulley, two string connected bodies of which one is lying on a horizontal plane (or on inclined plane) while the other suspended freely. 	9	5	CO1 CO2 CO3 CO4
5.2 MOMENTUM, IMPULSE AND IMPULSIVE FORCE Momentum, impulse and impulsive force—definition and unit. Law of conservation of momentum, simple problems based on momentum, impulse, impulsive force, and law of conservation of momentum.	6	4	
Total	75	48	

6. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Force and moment	10	18
2	Equilibrium	10	15
3	Centroid and centre of gravity	7	9
4	Friction and simple machines	12	18
5	Dynamics	9	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

Sr.	Practical (Minimum six to be conducted)	Marks
No.		
1.	Verification of Polygon law of forces.	
2.	Verification of Lami's theorem.	
3.	Determination of coefficient of friction (between any two different surfaces.)	
4.	Calculation of support reactions using Beam apparatus.	
5.	Determination of MA, VR, efficiency and law of machine for any three simple lifting machines.	
6.	Determination of angle of repose.	
7.	Determination of the resultant of coplanar and concurrent forces (Graphical analysis, one sheet.)	
8.	Determination of the resultant of coplanar, non-concurrent forces, and parallel forces. (Graphical analysis, one sheet.)	

No	Class room Assignments	
1	At least three assignments covering above units.	
No	Tutorial Exercise	
1	At least six problems on each of the units mentioned above.	
	Tota	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Dhade, Jamdar and Walawalkar.	Fundamentals of Applied Mechanics	Sarita Prakashan, Pune.
2	R.S.Khurmi	Applied Mechanics	S. Chand
3	A. R. Basu	Engineering Mechanics	Tata MacGraw Hill, Delhi.
4	Patel, Sanghavi and Thakur	Engineering Mechanics	Mahajan Publishing House, Ahmedabad.

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publis	hers	
1	Beer-Johnson	Engineering Mechanics	Tata Delhi.	McGraw	Hill,
2	Joseph F. Shegley	Vector Mechanics for Engineers Vol-1 and 2	Tata Delhi.	McGraw	Hill,

9.3Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1	WizIQ	https://www.wizig.com/tutorials/applied-	-
		mechanics	
2	NPTEL	https://nptel.ac.in/courses/122102004	-

9.4 Videos and Multimedia Tutorials

Author	Title of Books	Publishers
NITTTR	CDs of experiments in Engineering	-
	Mechanics.	
NPTEL		-
	NITTTR	NITTTR CDs of experiments in Engineering Mechanics.

(MC302) MANUFACTURING PROCESSES

1. COURSE OBJECTIVES:

The students will be able to acquire knowledge of various manufacturing processes, tools, equipment's and Machines required for converting raw materials into finished product in the recommended manner. Knowledge about various Manufacturing processes and allied areas will be of great use to the personnel involved in production. This will provide the students an opportunity to skill themselves for the industrial scenario.

2. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Per	iods/W	leek	Total		Exan	nination	Scheme	
course title	(i	n hour	s)	Hours	Theory	Theory Marks		cal Marks	Total Marks
MC302	L	Т	Р	Н	TH	ТМ	TW	PR/OR	
Manufacturing Processes	3	-	2	5	75	25	25	-	125

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC302CO1: State basic manufacturing processes for manufacturing different components.

MC302CO2: Explain basic principles of various manufacturing processes and working of machine tools.

MC302CO3: Select the specific manufacturing process for getting the desired type of output.

MC302CO4: Compare various manufacturing processes in producing jobs.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PS01	PSO2
CO1	2	1	1	1	1	1	1	2	1
CO2	2	2	1	1	1	1	1	2	2
CO3	3	3	2	3	3	3	2	3	3
CO4	3	3	2	3	3	2	2	3	3

Relationship: Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours			
Unit	М	Thr	CO
1. FOUNDRY	15	10	
1.1 PATTERN MAKING			
Introduction, Material used, types- Single piece, Multiple piece, Cope and drag pattern, gated			
pattern, Patterns allowances, introduction to Cores.			CO1
1.2 MOULDS			CO2
Mould materials, Types of moulding sand, Moulding processes			CO3
1.3 MELTING PRACTICE			CO4
Construction and working of Cupola furnace & electrical furnace			
1.4 CASTING			
Casting principle and operation: Centrifugal, Pressure Die casting, Types of casting defects			
and remedies.			
2. WELDING	15	10	
2.1 Classification			

METAL ARC WELDING		
iple and procedure, polarity, Equipment & electrodes used,		C01
DING		CO2
ciple and procedure, Types of gas welding flames and their applications,		CO3
used		CO4
AND SOLDERING		
Principles & Applications		_
G DEFECTS		
s of welding defect and remedies		
ORMING PROCESSES 6	10	
king principle of mechanical and hydraulic press		CO1
IETAL WORKING		CO2
nching, notching, blanking, embossing, stamping and deep drawing.		CO3
		CO4
lose die forging		
15	10	
on, Description and functions of various parts of Centre lathe		CO1
tion of Centre Lathe, Parameters- Speed, feed, Depth of cut according to		CO2
s and tools- Turning, parting off, Knurling, facing, boring, threading, taper turning.		
AND MILLING PROCESSES 20	12	
Classification of drilling machines, Nomenclature of a drill, Basic parts and their		
sitive, Radial drilling machine		CO1
drilling operations, Types of drill and reamers		CO2
		CO3
		CO4
Classification of Milling machines, Basic parts and their function- Column and		
ling machine		
milling operations, Types of milling cutters		
TOTAL 75	48	
tion of Centre Lathe, Parameters- Speed, feed, Depth of cut according to s and tools- Turning, parting off, Knurling, facing, boring, threading, taper turning. AND MILLING PROCESSES 20 Classification of drilling machines, Nomenclature of a drill, Basic parts and their sitive, Radial drilling machine drilling operations, Types of drill and reamers Classification of Milling machines, Basic parts and their function- Column and ling machine milling operations, Types of milling cutters		

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Foundry	10	15
2	Welding	10	15
3	Metal forming Processes	6	10
4	Lathe	10	15
5	Drilling and Milling Processes	12	20
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical	Marks
	Practical Title	
1	To prepare a single piece pattern: One Job	2.5
2	To Prepare a mould cavity using split pattern: One Job	2.5
3	To prepare a welding job in flat and horizontal position by arc welding process	05
4	One turning job on lathe containing the operations like plain turning, step turning, grooving, knurling	7.5
5	One job on milling and drilling operation	05
6	One job on sheet metal	2.5
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers		
1	S.K Hajra Chaudhary &	Elements of workshop Technology -	Media Promoters and		
I	A. K. Hajra Chaudhary	Volume I & II	Publishers limited		
2	P.N Rao	Manufacturing Technology (Foundry,	Tata McGraw Hill		
2		Forming & Welding)	Publishers, New Delhi		
3	O.P Khanna	A Textbook of Production Technology	Dhanpat Rai		
3			Publication, New Delhi		
4	M. Adithan and A.B.	Manufacturing Technology	New Age International		
4	Gupta		(P) Ltd, New Delhi		

(MC301) MACHINE DRAWING

1. COURSE OBJECTIVES:

The students will be able to acquire knowledge to develop proficiency in reading and interpreting a wide variety of production drawings. Also, to impart skills in visualizing component assemblies and freehand sketching. students will able to use IS conventions on drawings; they should also be able to draw free hand proportionate orthographic views of machine components & assembly and detailed drawings of machine components.

2. TEACHING AND EXAMINATION SCHEME

Semester I									
Course code &	Pe	riods/V	Veek	Total		Exan	nination		
course title	(in houi	rs)	Hours	Theory Marks		Practical Marks		Total
									Marks
MC301	L	Т	Р	Н	TH	ТМ	TW	PR/OR	
Machine Drawin	g 02	-	04	06	75	25	50	-	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- MC301CO1: Define conventional representations, elements of production drawings, machine parts, pipe joints & weld joints.
- MC301CO2: Demonstrate the skill of free hand sketching of machine components, assembly & detailed drawing of machine parts, piping & welding drawings.

MC301CO3: Interpret assembly and detailed drawings of machine components, piping & welding drawings. MC301CO4: Develop the assembly and detailed drawings.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	1	2	0	2	2	0
CO2	2	2	2	1	1	1	2	2	1
CO3	3	3	3	1	2	2	2	3	2
CO4	3	3	3	2	2	3	3	3	3

Relationship : Low-1 Medium-2 High-3

Iarks Thr = Teaching hours CO = Course Objectives	L	<u> </u>	
Unit	М	Thr	CO
1. Conventional Representations	09	03	
1.1 Conventional representation of different materials			
1.2 Long and short break representation of pipes and shafts.			C01
1.3 Conventional representation for ball bearings, roller bearings, springs, screws, spoked			
wheels, studs, nuts and bolts.			
1.4 Representation of different types of sections.			
2. Free Hand Sketches	09	04	
2.1 Hexagonal headed bolt, washer and nut (Assembled & individual), Sunk key, Feather key,			
Woodruff key, Gib and cotter joint.			C01
2.2 Muff Coupling, Flexible coupling, V-belt pulley and Flat belt pulley with arms.			CO2
2.3 Pipe Joints			
Socket joint, socket and spigot joint, union joint and expansion joint			
3. Assembly and Detailed Drawings	30	11	
3.1 Assembly drawings			C01
Knuckle joint, Protected type flange coupling, Foot step bearing, non-return Valve.			CO2
3.2 Detailed Drawings			
Socket and spigot joint, Universal coupling, Plummer block, simple eccentric.			004
4. Pipe Fittings, welds and Welded Joints	18	08	
4.1 Different types of pipe fittings			
Coupling, cap, Tee, elbows, cross, lateral, reducer, valves, union, plug. Single line and double			
line Representation of the pipe fittings.			CO1
4.2 Different types of welded Joints			_ CO1 CO2
Lap joint, butt joint, Tee joint, corner joint, fillet weld.			CO3
4.3 Representation of weld details on drawing			
Conventional/Sectional representation of fillet, butt, single and double U, V, J and Bevel weld,			
seam weld, spot weld. Chipping, grinding finish & machining finish & contour.			
Representation of weld on arrow side, site weld, weld all round, on other side, intermittent			
weld, weld length, weld size, concave & convex finish, flush finish.			
5. Elements of production Drawing	09	06	
5.1 Introduction to ISO system of tolerancing			
Elements of interchangeable system, hole and shaft-based system, limits, fits and allowances.			
Selection of Fit.			C01
5.2 Geometrical Tolerances			CO3
Types, terminology, representation of geometrical tolerances on drawings.			
5.3 Dimensional Tolerances			1
Terminology, selection of dimensional tolerances, representation of dimensional tolerances on			
drawings.			
5.4 Surface Roughness			
Terminology, representation of surface roughness on drawings.			
Total	75	32	

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of lectures	Marks
1	Conventional Representations		03	09
2	Free Hand Sketches		04	09
3	Assembly and Detailed Drawings		11	30
4	Pipe Fittings, welds and Welded Joints		08	18
5	Elements of production Drawing		06	09
		Total	32	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical	Marks
1.	Fair sheet on conventional representation & freehand sketches	08
2.	Fair sheet on assembly drawing of machine Component	12
3.	Fair sheet on detail drawings of machine Component	12
4.	Fair sheet on piping & welded joints.	08
5.	Fair sheet on production drawing.	10
	Total	50

9. LEARNING RESOURCES Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	N.D. Bhatt.	Machine Drawing	Charotkar publishing
	&V.M.Panchal		house
2	R.V.Mali & B.S.	Mechanical Engineering Drawing	Vrinda Publication
	Chaudhari		
3	P. S Gill	A Text book of Machine Drawing	S.K. Kataria & Sons
4	N.Sidheswar, P.Kannaiah,	Machine Drawing	Tata McGraw Hill
	VVS Sastry		
5	R. K. Dhawan	Machine Drawing	S. Chand

(MC 303) THERMAL ENGINEERING

1. COURSE OBJECTIVES:

Mechanical engineering diploma holders have to work with various power producing, power absorbing and heat transfer devices. In order to understand the principles, construction & working of these devices, it is essential to understand the concept of energy, work, heat & conversion between them. Thermal engineering includes the study of various sources of energy, basic laws & concept of thermodynamics, gas laws, properties of steam & generation. Heat transfer forms the basis for different power engineering application. Boilers find application in different process industries. Steam turbines and Condensers are the major component of any steam power plant. Mechanical engineer will able to understand working and application of these devices.

2. TEACHING AND EXAMINATION SCHEME

Semester III											
Course code &	Per	iods/W	leek	Total		Exan	Examination Scheme				
course title	(i	n hour	s)	Hours	Theory Marks		Theory Marks Practical Mark		Practical Marks		Total
					-				Marks		
THERMAL	L	Т	Р	Н	TH	ТМ	TW	PR/OR			
ENGINEERING	03	01	01	05	75	25	25	-	125		

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC303CO1: Define the various thermodynamic processes and gas laws.

MC303CO2: Explain the construction and working of various thermodynamic equipments.

MC303CO3: Solve various problems on laws of thermodynamics, gas laws, properties of steam and heat transfer. MC303CO4: Compare the various types of thermodynamic equipments.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	0	0	1	0	2	1	0
CO2	3	3	1	2	0	1	2	2	0
CO3	3	2	2	2	0	1	3	3	1
CO4	3	3	1	1	1	0	1	3	1

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN			_
M = Marks Thr = Teaching hours			
Unit	М	Thr	CO
1 BASICS OF THERMODYNAMICS (No Numericals)	06	04	
1.1 Types of systems, Properties of systems, Extensive and intensive properties and their			
units			
1.2 Work and Energy-Thermodynamic definition of work, heat, difference between and			CO1
work, definition of potential energy, kinetic energy and internal energy.			
1.3 Concept of enthalpy and entropy.			
2. LAWS OF THERMODYNAMICS	12	07	
2.1 Laws of Thermodynamics-Zeroth's law, First law of Thermodynamics, Principle of			
conservation of energy, irreversibility.			CO1
2.2 Second Law of Thermodynamics, Kelvin Plank and Clausius statements, Applications to			CO3
heat engines, refrigerator and heat pumps			
(simple numericals).			
3 IDEAL GAS	15	10	
3.1 Concept of ideal gas, Charles Law, Boyle's Law, Gay-Lussac's Law, Avogadro's Law,			
Equation of state for a perfect gas			
3.2 Characteristic gas equation (no derivation), Universal Gas constant (Simple Numericals).			CO1
3.3 Ideal Gas Processes- Isobaric, Isochoric, Isothermal, Adiabatic and Polytropic processes			CO3
with representation on P-V AND T-S diagram			
(simple numericals).			
4. STEAM AND STEAM BOILERS	24	15	
4.1 Enthalpy and Entropy of water and steam, Generation of steam at constant pressure with			
representation on various charts such as T-H, T-S and H-S.			_
4.2 Properties of steam, quality of steam and use of steam tables.			
(Simple Numericals)			-
4.3 Types of steam calorimeter – Barrel, Separating and Throttling			CO1
(No Numericals).			CO2
4.4 Steam Boilers- Classification of Boilers			CO3
4.5 Principle and Working of Packaged Type Fire Tube Boiler			CO4
4.6 Principle and working of Babcock and Wilcox, Lamont and Benson Boiler			_
4.7 Boiler mountings- construction and working of Water level indicator, Pressure gauge,			
Feed check valve, Spring loaded safety valve (Ramsbottom valve), blow-off cock and fusible			
plug.			_
4.8. Boiler accessories- construction and working of Economiser, Air preheater and			
Superheater.		10	_
5. HEAT TRANSFER	18	12	_
5.1 Modes- Conduction, Convection and Radiation			_
5.2 Fourier's law of heat conduction-Equation and terminologies.			_
5.3 Heat transfer by conduction through a single slab (Simple Numericals)			-
5.4 Heat Exchangers- Construction and working of Direct contact type, Indirect contact type,			CO1
Parallel flow, Counter flow and Cross flow.			CO2
5.5 Condensers: Classification of condenser			
5.6 Surface Condenser-Construction and working of			CO4
1.) Shell and tube type - Down flow			
2) Evaporative condenser			4
5.7 Cooling Towers: Types, Construction and working of Natural draught, and Forced draught		 	<u> </u>
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Basics of Thermodynamics	04	06
2	Laws of Thermodynamics	07	12
3	Ideal Gas	10	15
4	Steam and Steam Boilers	15	24
5	Heat Transfer	12	18
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical	Marks
1.	Demonstration of Babcock and Wilcox boiler model	5
2.	Study of Package boiler (Field visit/Video presentation)	5
3.	Study of Shell & Tube Heat Exchanger	5
4.	Demonstration of a cooling tower (Field visit/Video presentation)	5
5.	Study of surface condensers (Field visit/Video presentation)	5
	Total	25

9. LEARNING RESOURCES 9.1Text Books

7.110	EXT DUUKS		
S.	Author	Title of Books	Publishers
No.			
1	Patel &	Elements of Heat Engines-	Acharya Publications
	Karamchandani	VOL 1 &2	
2	R S. khurmi	A text book of Thermal Engg	S. chand
3	Pandya & Shah	Heat Engines Vol 1	Charotar publishing house Pvt Ltd
4	R K Rajput	Thermal Engg	Laxmi publications (pvt) ltd
5	P L Ballaney	Thermal Engg	Khanna Publishers.

9.2Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	P K Nag	A text book of Engg Thermodynamics	McGraw Hill
2	R K Rajput	A text book of Engg Thermodynamics	Laxmi Publications(pvt.) Ltd

(CC302) ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING 1. COURSE OBJECTIVES:

The students will be able to acquire knowledge about electrical and electronics engineering relevant to his job requirement of operation and maintenance in industry. The students will able to acquire basic knowledge of distribution of electrical energy including wiring & Earthing, use of various protective devices, construction & working of Transformer, Motors etc.

2. TEACHING AND EXAMINATION SCHEME

Semester	III									
Course cod	e&	Peri	ods/W	/eek	Total		Exan	nination	Scheme	
course title		(iı	n hour	s)	Hours	Theory	Marks	Practi	cal Marks	Total
						, , , , , , , , , , , , , , , , , , ,				Marks
ELEMENTS	OF	L	Т	Р	Н	TH	TM	TW	PR/OR	
ELECTRICAL	AND	3	-	2	5	75	25	25	-	125
ELECTRON	ICS									
ENGINEERI	NG									

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC302CO1: Describe concepts in distribution of electrical power.

- CC302CO2: Illustrate the construction and working of different types of electrical machines, electrical & electronic devices.
- CC302CO3: Sketch simple electrical & electronic circuits.

CC302CO4: Compare different types of electrical machines and simple electronic circuits.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	0	0	1	1	0	0	2	1
CO2	2	1	0	1	1	1	2	2	1
CO3	2	0	1	0	0	1	0	2	1
CO4	2	1	1	1	1	2	2	2	1

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours			1
Unit	М	Thr	CO
1 Distribution of Electrical Energy	15	11	
1.1 Voltage levels in the various stages in the flow of electrical power from 110KV substa	ation to		CO1
11KV/440V distribution transformer (using single line diagram only). Voltage level	els for		CO3
commercial and domestic use.			
1.2 Features of Overhead and underground distribution systems and their comparison			
1.3 Features of Conduit wiring system- surface and concealed, its advantage	es and		
disadvantages.			
1.4Definition of Earthing, its necessity. Types of Earth electrodes-Pipe and Plate ele	ctrode.		
Methods of reducing earth resistance.			
2 Cables, Switching and Protective Devices	18	10	
2.1 Construction of three phase PVC insulated power cables. Specifications of PVC of	cables.		CO1
Colour codes of single phase and three phase PVC cables. Method of laying under	ground		CO2
cables.			CO3
2.2 Fuses- Construction and Applications of Rewirable fuses and HRC fuses.			
Functions and symbols of Switch-Fuse Unit, Fuse-switch Unit, Contactors, MCB, MCC	CB and		
ELCB.			

2.3 Construction and operation of a simple electromagnetic relay and limit switches.			
3 Transformers	6	04	
3.1 Principle of operation and basic construction of a single-phase transformer (core and			CO1
winding only). Comparison between core type & shell type arrangement .EMF equation (no			CO2
derivation and no numerical).			CO3
3.2 Losses in a transformer, efficiency and concept & significance of voltage regulation (no			
derivation and no numerical). Significance of KVA Rating of transformer.			
4 DC and AC Motors	18	12	
4.1 Working principle of DC motors, main parts of DC motor and their functions, Classification			CO1
of DC motors (shunt, series and compound and their applications). Necessity of a starter for			CO2
DC motors (No study of starters).			CO4
Methods of reversal of direction of rotation of DC shunt and series motor.			
Methods of Speed control for DC shunt motors			
4.2 Principle of operation of three phase induction motor. Main parts of three phase squirrel			
cage & Slip Ring Induction motors. Applications of induction motors. Necessity of starter,			
Names of starters used, reversal of direction of rotation.			
4.3 Working principle of an alternator.			
5 Basic Electronic Devices & Logic Gates	15	11	
5.1Semiconductor theory-Construction of Intrinsic and extrinsic semiconductor, P and N type			
semiconductors, working principle of Diode, diode V-I characteristics,			CO2
5.2 Full wave centre-tap and bridge rectifiers- circuit diagram, operation and waveforms,			CO3
capacitor filter to reduce ripple voltage.			CO4
5.3 Transistor -NPN and PNP, construction, symbol and operation. Transistor CE Amplifier-			
circuit diagram and operation using waveforms only. Applications of transistors (naming only)			
5.4 Binary number system, Symbols and Truth Tables of AND, OR, NOT, NAND, NOR, X-OR,			
X-NOR Gates			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of lectures	Marks
1	Distribution of Electrical Energy		11	15
2	Cables, Switching and Protective Devices		10	18
3	Transformers		04	09
4	DC and AC Motors		12	18
5	Basic Electronic Devices & Logic Gates		11	15
	Т	otal	48	75

	ECIFICATION TABLE FOR TERM WORK & PRACTICALS.	1
No	Practical(Any eight to be conducted)	Marks
1.	Identification of various components of a Diesel-Engine Generator set and study its operation.	
2.	Connection of a single-phase Transformer and Calculation of its efficiency & Voltage Regulation for different loads.	
3.	Simulation of fuse failure on any one primary phase of a 3-phase transformer and study its effect on the secondary voltages.	
4.	Connection and Starting of three phase induction motor using manual and automatic star delta starter	
5.	Connection, starting, running and speed control of Slip Ring induction motor	
6.	Calculations for selection of PVC cables for different currents.	
7.	Identification of Fuses, MCBs and ELCBs and study of operation of MCB and ELCB for different simulated faults.	
8.	Circuit assembly, measurement of input and output voltages and fault simulation and troubleshooting of Bridge and Centre-tap Rectifiers	
9.	Circuit assembly for ON/OFF control of single-phase loads such as lamps, home appliances, etc. using transistorized circuit and a Relay.	
10.	Verification of truth tables of Logic Gates	
11.	Mini Electronic project	
	Total	25

9. LEARNING RESOURCES

9.1Text Books

S. No.	Author	Title of Books	Publishers							
1	R L Thoroin	Text book of Electrical Technology	S Chand & Comp.							
L	B.L. Thereja.	Vol I & Vol II	Ltd							
2	V.K. Mehta	Principles of Electronics	S Chand & Comp.							
2	V.K. Merita	Engineering (Revised Addition)	Ltd							

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	J B Gupta	Course in Electrical Power (Latest	S K Kataria & Sons.
		Adddition)	
2	B.L. Thereja.	Text book of Electrical Technology	S Chand & Comp.
		Vol IV	Ltd

(MC 304) COMPUTER AIDED DRAFTING

1. COURSE OBJECTIVES:

The students will be able to acquire knowledge of CAD software for preparing 2D and 3D drawings. The market driven economy demands frequent changes in product design to suit the customer needs and the introduction of drafting and designing softwares in manufacturing has made the task of incorporating frequent changes as per requirement easier. This course will make the student capable of creating, editing and plotting quality CAD drawings using CAD software.

2. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Per	iods/V	Veek	Total		Exan	nination	Scheme	
course title	(ii	n hou	rs)	Hours	Theory	Marks	Practi	cal Marks	Total Marks
COMPUTER	L	Т	Ρ	Н	TH	TM	TW	PR/OR	
AIDED DRAFTING	-	•	4	4	-	•	50	50	100

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to: MC304CO1: Identify the various Toolbars and commands required for making 2D & 3D drawing.

MC304CO2: Interpret the use of Toolbars & commands in making 2D & 3D drawing.

MC304CO3: Select the correct toolbars & commands in making 2D & 3D Drawings.

MC304CO4: Develop 2D & 3D drawing in CAD environment.

4. Mapping Course Outcomes with Program Outcomes Relationship : Low-1 Medium-2 High-3

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	0	1	1	0	1	2	1	1
CO2	2	1	1	1	0	1	2	1	1
CO3	2	2	2	1	0	1	2	1	1
CO4	2	2	3	2	2	2	3	2	2

5. DETAILED COURSE CONTENTS FOR TERM WORK & PRACTICALS

larks Phr = Unit	Practical hours	M	Phr	СО
1 Introduction and C	AD Preliminaries.	-	2	
1.1 Computer aided d				
1.2 Hardware and var	ous CAD software available			
1.3 Components of a	AD software such as various toolbars in res	spective software's		CO
1.4 File features Man	gement: (like New file, Saving the file, Ope	ening, Import and Export of		
file)				
1.5 Setting up the CA	environment			_
2 Drawing, Editing, M	odifying and organizing 2D drawing:	-	28	
2.1 Drawing basic geo	netric elements			
2.2 All View Comman	ls: (like Zoom all, Zoom Previous, Zoom Ex	tents, zoom window, zoom		CO
real time, Zoom Dyna	nic, Zoom Pan)			CO
2.3 All Modify comma	nds / Transformation commands: such as	Mirror, Array, Move, Scale,		- CO3 CO
Trim, chamfer, fillet.				
2.4 Concepts of layers	and blocks.			
3 Dimensioning and	Tolerancing	-	12	
3.1 Dimensioning: T	pes of dimensioning, Linear, Horizontal,	Vertical, Aligned, rotated,		
Baseline, continuous,	liameter, radius, angular dimension, Leader	r.		CO,
3.2 Dimension scale v	ariable, adding geometric tolerances			CO
3.3 Editing dimension				- CO3 CO4
3.4 Text styles: select	ng font, size, arrows, alignment, line text, M	ultiline text.		
4 Solid Modelling		-	16	
4.1 3D features such a	s understanding co-ordinate system, Viewir	ng in 3D		
4.2 Concept of solid n	odelling			CO
4.3 Creating predefine	d solid primitives such as box, cone, cylinde	r, sphere, torus, wedge.		CO
4.4 Creating an extruc	ed solid, creating a revolved solid.			- CO: CO
4.5 Creating composit	solids			
4.6 Rendering				
5 Model space, Pape	space, viewports, layouts & Printing/Plo	otting -	6	
	pace and paper space			
	in model space and creating floating viewpool I space to paper space and vice versa.	ort in paper space.		
5.5 Shinting Iron moto	i space to paper space and vice versa.			
5.4 Selecting various	plotting parameters such as paper size,	paper units,		

drawing orientation, plot scale, plot offset, plot area, print preview.			
Total	50	64	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **07. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.**

No	Practical	Marks			
1.	Drafting of common template for all the following assignments with Institute logo	03			
	and standard title block.				
2.	At least Five problems on different geometrical shapes using basic commands.				
3.	At least Three problems with transformation features.	07			
4.	Two problems on orthographic views for various Engineering drawing objects covering dimensioning, text.	10			
5.	Create at least two solid models, which cover all the features available in solid modelling.	15			
6.	Drafting project:	10			
	 a) Civil Engg. & Architectural Engineering: Plan, elevation and section of a single-story residential building. 				
	 b) Electrical & Electronics and Allied Engg. Branches: Electrical layout of components like bulbs, fan, A.C., T.V. point, telephone point, etc. for a single-story house. 				
	 c) Mechanical and Allied Engg. Branches: Industrial components such as machines, automobiles, jigs and fixtures with dimensioning, tolerancing, text, title block, Assembly etc. 				
	d) Shipbuilding Engg. Body plan of a ship.				
	e) F.T.E.E.: Front View and Bottom View of a Simple truss like Saw Tooth truss, King-Post truss, Snow Tooth truss. (Any one of the three)				
	Total	50			

8. LEARNING RESOURCES

8.1Text Books **Title of Books** Publishers S. No. Author Nageshwar AutoCAD for Engineering drawing made easy -Tata McGraw Hill. 1 Ρ. Rao P. Nageshwar Rao- Tata McGraw Hill. AutoCAD 2018 training Guide 2 Sagar Linkan **BPB** Publications 3 PRO/ Engineer PTC creo parametric 3.0 4 Sham Tickoo Dreamtech Press (2015) Sham Tickoo Solid Works 2018 **BPB** Publication 5 Nader G. CATIA V5 Tutorials SDC Publications 6 Zamani.

8.2 Refe	8.2 Reference Books for further study							
S. No.	Author	Title of Books	Publishers					
1	Sham Tickoo	Pro/ENGINEER Wildfire 5.0 for Designers	CADCIM Technologies					
2	Sham Tickoo	AutoCAD 2019: A problem Solving Approach	BPB Publication					
3	George Omura	Mastering AutoCAD	BPB Publication					
4	Sham Tickoo	CATIA V5-6R2017 for Designers 15th Revised Edition	BPB Publication					

SEMESTER IV

(MC 401) STRENGTH OF MATERIALS

1. COURSE OBJECTIVES:

Through this course the students will able to understand the fundamentals of solid mechanics, acquire the elementary knowledge of stresses, strains and their effects. They will also analyze the behavior of machine parts under various loads. It is important to understand and analyze various types of loads, stresses and strains, which are the main causes of failure of machine parts. The subject also deals with understanding the properties of engineering materials and applying the same in solving engineering problems.

2. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code & Periods/Week Total Examination Scheme									
course title	(i	n hour	rs)	Hours	S Theory Marks Practical Marks		Total Marks		
(MC 401) Strength of	L	Т	Р	Н	TH	ТМ	TW	PR/OR	
Materials	3	1	1	5	75	25	25	-	125

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC401CO1: Describe behaviour of engineering materials under the action of external loads.

MC401CO2: Represent simple stress & strain, SF & BM, Moment of inertia, bending stresses & torsion.

MC401CO3: Solve various problems on simple stresses & strains, SF & BM diagrams, bending stresses, moment of inertia & torsion.

MC401CO4: Analyse the behaviour of materials under various loads.

4. Mapping Course Outcomes with Program Outcomes

4. Mapping Course Outcomes with Flogram Outcomes									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimenting & Testing	Engg. Practices for Society, Sustainability &	Project Management	Life -long Learning		
CO1	3	1	0	0	2	0	2	2	1
CO2	3	3	1	1	0	1	1	2	0
CO3	3	2	2	1	0	0	2	3	0
CO4	3	3	2	1	1	1	2	3	1

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours Units:	M	Thr	СО
1. SIMPLE STRESS AND STRAIN	15	10	
1.1 Definition of stress and strain (Numericals on stress and strain)	15	10	_
1.2 Stress – strain Curve for Ductile Material labeling the significant points on the curve.			_
1.3 Concept of elastic limit, Hooks law &Young's Modulus of Elasticity			_
1.4 Deformation expression of a body subjected to single force $[\delta] = PL/AE]$			_
1.5 Numericals based on concept of principle of Superposition [Bars of uniform cross section			C01
& Bars of different cross sections only]			CO2
1.6Concept of lateral strain and Poisson's Ratio.			CO3
[Numericals on lateral strain & Poisson's Ratio to be covered]			CO4
1.7 Concept of shear stress, shear strain and Modulus of Rigidity.			_
1.8 Definition of term- volumetric strain and bulk Modulus [No Numericals]			_
Note: - [Numericals on stresses in composite sections are to be excluded.]			
2. SHEAR FORCE & BENDING MOMENT	15	10	
2.1 Types of beams and Supports.	1.0		
2.2 Concepts of shear force & Bending Moment.			C01
2.3 Sign Conventions for shear force & Bending Moment.			CO2
2.4 Shear force and bending moment diagram for simple cantilever and simply supported			CO3
beams subjected to point and uniformly distributed load only.			CO4
3. MOMENT OF INERTIA	15	10	
3.1 Definition of Moment of Inertia			
3.2 Perpendicular & Parallel Axis Theorem.			CO1
3.3 Expression of M.I of Rectangular, circular, Triangular & hollow Rectangular sections (No			CO2 CO3
derivations, simple numericals).			
3.5 Numericals on sections like L section, T section and I section			
4. THEORY OF SIMPLE BENDING	15	09	
4.1 Concept of pure Bending.			CO1
4.2 Theory of simple Bending, Neutral Axis and Bending equation.			CO2
4.3 Bending stress distribution diagram			CO3
4.4 Application of bending equation for solid rectangular, solid circular section, hollow			CO4
rectangular and hollow circular section. (simple numericals)			
5. TORSION	15	09	
5.1 Concept of pure Torsion	1.0		
5.2 Torsion equation assumptions in Theory of pure torsion.	1	1	C01
5.3 Strength of circular solid &hollow shaft in pure torsion.	1	1	CO2
5.4 Shear stress distribution diagram.	1	1	CO3
5.5 Polar Modulus, power transmitted by shaft.	1	1	CO4
Total	75	48	

N.B: - Question paper will not carry questions on derivations 6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and tutorials.

Unit No	Unit	Number of lectures	Marks
1	SIMPLE STRESS AND STRAIN	10	18
2	SHEAR FORCE & BENDING MOMENT	10	18
3	MOMENT OF INERTIA	10	15
4	THEORY OF SIMPLE BENDING	09	12
5	TORSION	09	12
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical (no 1 and 2 are compulsory and any 03 from 3 to 8)	Marks
1.	Tensile Test on M.S or Al using UTM	4
2.	Compression Test on wood/Resin sample using UTM	3
3.	Shear Test on M.S using UTM	3
4.	Brinell Hardness Test on Hardness Testing Machine	3
5.	Rockwell Hardness Test on Hardness Testing Machine	3
6.	Izod Impact Test on M.S or Al.	3
7.	Charpy Impact Test on M.S. or Al.	3
8.	Torsion Test on M.S Specimen.	3
	Total	25
No	Tutorial Exercise	
1	Solve atleast 5 problems on unit 1	
2	Solve atleast 5 problems on unit 2	
3	Solve atleast 5 problems on unit 3	
4	Solve atleast 5 problems on unit 4	
5.	Solve atleast 5 problems on unit 5	

9. LEARNING RESOURCES

9.1Text Books

S.	Author	Title of Books	Publishers
No.			
1	R.S Khurmi	Strength of Materials	S.Chand Publisher
2	S.S. Bhavikatti	Strength of Materials	Vikas Publishing
3	S. Ramamurtham	Strength of Materials	DhanpatRai&Sons
4	R. K. Rajput	Strength of Materials	S.Chand Publisher

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	F.L. Singer	Strength of Materials	London Harper & row
2	Timoshenko & Gere	Mechanics of Materials	CBS Publisher & Distributors, New Delhi
(MC402) MECHANICAL WORKSHOP PRACTICE

1. COURSE OBJECTIVES:

The students will be able to acquire knowledge to Plan methodology and prepare the job as per given specification by selecting and applying appropriate manufacturing process and Understand the concepts, procedures, types of cutting tools, work holding devices, various operations performed on these machines, their working principles and practices related to various manufacturing processes.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course cod	le &	Peri	ods/V	Veek	Total		Exan	ninatior		
course title		(ir	n hou	rs)	Hours	The	ory	Pra	actical	Total
						Ma	rks	Μ	larks	Marks
(MC402		L	Т	Р	Н	TH	TM	TW	PR/OR	
MECHANI		-	-	04	-	-	-	50	50	100
WORKSH										
PRACTIO	CE									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC402CO1: Identify different types of machine tools and machining processes to produce a component.

MC402CO2: Outline a manufacturing sequence to produce a given part.

MC402CO3: Apply basic skills in the use of various machine tools (milling m/c, grinding machine, shaper and lathe) to perform job following safety guidelines. MC402CO4: Plan a maintenance schedule for effective functioning of machine tools.

4. Mapping Course Outcomes with Program Outcomes

Relationship: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO 1	3	1	1	2	2	1	1	1	2
CO 2	3	2	2	1	0	0	0	0	2
CO 3	3	2	2	3	1	1	1	2	3
CO 4	2	1	2	3	1	1	1	1	2

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Phr = Practical hours				<u>.</u>	
Unit				Μ	Phr	CO
1. LATHE.						
1.1 Introduction to types of Lat	he.					
	enclature, thread cutting operat					
	dule and lubrication chart. Types of					
1	l turret lathe, Principal parts of ca	ipstan a	and turret			
lathe.						CO1
	, main elements of CNC lathe, I					CO2
	tion- operating and control eleme	ents, co	-ordinate			CO3
system.						
1 0 0	of programming-absolute system					
	G-functions), CNC program input	format	•			
2. Milling machine			• •			
	nee type milling machine (horizon	tal and	vertical),			C01
milling cutters, milling operation						CO2
•	construction and working, Inde	xing-di	rect and			CO3
simple indexing only.		· .	1 .			CO4
	maintenance schedule and lub	rication	n charts.			
Coolants.						
3 Grinding.	· / XX7 1 1 11 1 · 1 ·					001
	ine types. Work holding devices.	1 1	• 1			
	. Grite, Grade and structure of whe					CO2
	n, mounting of wheel, balancing of	r wheel	•			CO3
3.2 Use of Coolant						
4 Shaper.						001
4.1 Introduction to Shaper.	1 1 1 1 1 1 1 1					
	er, work holding devices shaper of	peration	18.			
4.3 Preventive maintenance sch	edule and lubrication chart.					CO3
			T-4-1			CO4
			Total		64	

6. COURSE DELIVERY:

The Course will be delivered through shop talk, shop floor interactions, demonstrations, assignments, video clips and Practicals.

7. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

Sr.	Unit	Practicals/Assignment	Phrs
No	No		
1	1	Job on external threading	04
2	1	Prepare simple job on CNC machine	04
3	2	Produce a hexagonal head/spur gear by indexing device	08
		Machine sides of a rectangular block (centre lathe/milling	08
4	2	machine) and mill two slot or opposite sides and a V-groove	
		on one side (V-block)	
		Prepare job on the following grinding machine	04
5	3	1) Surface grinder-flat surface-01	
		2) Cylindrical grinder-cylindrical surface-01	
6	3	Grind lathe tool	04
7	4	Machine two flat horizontal opposite sides of the rectangular	08
/	4	block on a shaper (to complete V-block. at Sr. No 4)	
		Prepare a preventive maintenance schedule(daily/monthly)	06
8	1,2,4	and a lubrication chart for any one of the following machine	
		tools (1) Centre lathe (2) Milling machine (3) Shaper	
09	1,2,4	Identify different types of machine tools in your workshop	04
09	1,2,4	and write down its specifications and uses	

Note: A field visit to modern workshop to be arranged during the semester

8. LEARNING RESOURCES 8.1 Text Books

0.1 I CAL	DUUKS		
S. No.	Author	Title of Books	Publishers
1	S.K Hajara	Elements of W/s Technology Vol I	Media Promoter &
	Chaudhary	& II	Publisher Pvt. Ltd
2	Raghuwanshi	Workshop Technology Vol II	Dhanpat Rai & Co
3	P.C Sharma	Production Technology	S. Chand & Co
4	Kaushik and Gupta	Workshop Technology	

8.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	R.K Jain	Production Technology	Khanna Publishers
2	W.A.J Chapman	Workshop Technology Vol I & II	CBS

(MC 403) MECHATRONICS

1. COURSE OBJECTIVES:

Modern industry demands lot of flexibility in product design and manufacturing processes. While satisfying this need industries cannot afford to compromise with quality, cost and delivery schedule. The area of Mechatronics has a tremendous potential to address such challenges by integrating Mechanical engineering with electrical, Electronics and software components. We can hardly find any field where mechatronics is not applicable. Basic knowledge of this course will definitely enhance the employability of pass-out students in various engineering areas.

2.	TEACHING	AND	EXAMINATION SCHEME

Semester	IV									
Course coo	de &	Per	iods/W	leek	Total Hours		Exan	nination	Scheme	
course ti	tle	(i	n hour	s)	nouro	Theory Marks		Praction	Total	
										Marks
(MC 403) Mechatror	-	L	T	Р	Н	TH	ТМ	TW	PR/OR	
meenation	100	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC403CO1: Define mechatronics, its basic elements & related terms.

MC403CO2: Explain basic types of mechatronics system and constructional features of different sensors, actuators and controllers.

MC403CO3: Select appropriate sensing and actuating elements having proper compatibility with the controller. MC403CO4: Analyse the functioning of various mechatronic systems along with relevant control programs.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO 1	3	2	1	0	0	0	0	1	0
CO 2	3	2	1	1	0	0	0	2	0
CO 3	3	3	3	3	1	1	2	3	2
CO 4	3	3	3	3	2	1	2	3	2

Relationship: Low-1 Medium-2 High-3

M = Marks Thr = Teaching hours Unit 1. Introduction to Mechatronics 1.1 Introduction to Mechatronics and its scope. 1.2 advantages and disadvantages of mechatronics. 1.3 Comparison between Traditional and Mechatronics system 1.4 Two types of Mechatronic systems – (i)Measurement type and (ii) Control type; Elements of Measurement system (Block diagrams) and examples; Applications of Open loop 8 Closed loop Control systems (Plock diagrams) and examples; Applications of Open loop	9 9	Thr 4	CO
 Introduction to Mechatronics 1.1 Introduction to Mechatronics and its scope. 1.2 advantages and disadvantages of mechatronics. 1.3 Comparison between Traditional and Mechatronics system 1.4 Two types of Mechatronic systems – (i)Measurement type and (ii) Control types Elements of Measurement system (Block diagram) and examples, Elements of Open loop 	9		
 1.1 Introduction to Mechatronics and its scope. 1.2 advantages and disadvantages of mechatronics. 1.3 Comparison between Traditional and Mechatronics system 1.4 Two types of Mechatronic systems – (i)Measurement type and (ii) Control types Elements of Measurement system (Block diagram) and examples, Elements of Open loop 		4	-
 1.2 advantages and disadvantages of mechatronics. 1.3 Comparison between Traditional and Mechatronics system 1.4 Two types of Mechatronic systems – (i)Measurement type and (ii) Control types Elements of Measurement system (Block diagram) and examples, Elements of Open loop 			_
 1.3 Comparison between Traditional and Mechatronics system 1.4 Two types of Mechatronic systems – (i)Measurement type and (ii) Control type; Elements of Measurement system (Block diagram) and examples, Elements of Open loop 			-
1.4 Two types of Mechatronic systems – (i)Measurement type and (ii) Control type Elements of Measurement system (Block diagram) and examples, Elements of Open loop			
Elements of Measurement system (Block diagram) and examples, Elements of Open loop			CO1
& Closed loop Control systems (Block diagrams) and examples; Applications of Mechatronics.			- CO2 CO4
1.5 Case studies of Mechatronics systems: - (i) Measurement type - Digital thermometer (ii) Control type- Engine Management system, Automatic Washing Machine,			
2. Sensors and Transducers	18	12	
2.1 Introduction of sensors and Transducers, Difference between sensor and transducer.			
2.2 Performance Terminology related with sensor,			-
2.2.1 Static characteristics - range and span, error, accuracy, sensitivity, repeatability, stability, resolution.			
2.2.2 Dynamic characteristics - response time, settling time.			
2.3 Classification of sensors-			-
A) Based on type of Output- (i) Analog (ii) Digital			
B) Based on need of external power: – (i) Active (ii) Passive			CO1
C) Based on sensed parameter: - (i) Pressure, Force (ii) Temperature (iii) Motion (displacement, Velocity, Acceleration) (iv) Flow and level (v) light (vi) smoke (vii) Colour (viii) touch (ix) Humidity (x) Proximity (xi) Infrared (IR)			CO2 CO3
2.4 Working principle and application of following sensors / Transducers: - (i) Potentiometer (ii) Strain gauge (iii) Linear Variable Differential Transformer (LVDT) (iv) Optical Encoder (v) Photoelectric Proximity sensor (vi) Tach generator (vii) Thermocouple (viii) RTD sensor.			
2.5 Selection criteria for sensors.			-
2.6 Signal Conditioning – need, process, functions, ADC and DAC. Block diagram of DAQ.	:		

3. Actuations Systems	15	10	
3.1 Introduction and Classification of Actuators.			-
3.2 Pneumatic Actuation System: Basic Elements of Pneumatic System. Hydraulic			_
Actuation Systems: Basic Elements of hydraulic system.			C01
3.3 Working principle, schematic diagram and symbols of following: -			CO2 CO3
Valves: - Direction control valves (Spool type) - 3/2 DC Valve and 5/2 DC Valve; actuation methods of DC Valves; Check valve, Pressure relief valve, Flow control Valves.			CO4
3.4 Cylinders: - Single Acting and Double acting cylinder.			
Rotary Actuators: - Gear motors and Vane Motors.			
3.5 Electrical Actuation systems: - Switching devices: Relays, Solenoid type devices: Solenoid valves, Drive systems: Stepper Motor and servo motor (Brief Working with neat sketches).			
4. Microcontroller	15	12	
4.1 Microcontroller: - Introduction, characteristics, classification and applications, Basic Block diagram. Introduction to Arduino platform.			
4.2 Atmel ATmega328 microcontroller: - Pin layout and other features.			
Arduino UNO R3 Board: - Hardware, main features, input output pins, powering, IDE and its installation, connecting to computer, program (sketch) compilation and uploading,			CO1
4.3 Introduction to basic Arduino circuit components: – LED, Resistor, Diode, Bread Board, Jumper, Button, Servo, LCD, LDR, IR LED, Relay.			CO2 CO3 CO4
4.4 Writing, compiling, uploading and running following programs: –Digital output (LED blinking), Analog output (LED fading).			
4.5 Arduino applications- Home and Industry automation, Robotics and control systems.			
5. Programmable Logic Controller (PLC)	18	10	C01
5.1 Introduction to PLC: Need for PLC, Definition, Advantages and disadvantages of PLC, PLC sizes.			CO2 CO3 CO4
5.2 Criteria for selection of PLC.			1
5.3 PLC system layout (Basic block diagram). Input/output processing. PLC function and operation.			
5.4 ladder programming: Concept of Ladder Diagram, sequence of ladder programming, logic functions, use of latching, internal relays, timers, counters in elementary level Ladder diagrams like motor start and stop, water level control, Output interlock, logic functions.			

Total 75

48

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies 7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
		hrs	
1	Introduction of Mechatronics	04	09
2	Sensors and Transducers	12	18
3	Actuations Systems	10	15
4	Microcontroller	12	15
5	Programmable Logic Controller (PLC)	10	18
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical	Marks
1.	Experiment on sensors from any three of the following: Temperature sensor, Pressure sensor, Flow sensor, level sensor, proximity sensor & force sensor.	3
2.	Identification, working of different actuating elements:Relay, solenoid valve, stepper motor, Servo motors, valves, cylinders etc	3
3 & 4	Experiment to build any two simple Pneumatic circuits.	3
5,6,7	 Any three experiments on Arduino Board from the following. i) Blinking and fading effects on LED ii) Turn on LED with button iii) Move the Servo to commanded angle iv) Print "Hallo world" in LCD v) Using a sensor 	5
8&9	Any two experiments on PLC trainer by developing ladder diagram from the following. i) Output interlock	5

	ii) Logic Functions	
	iii) Timers and Counters	
	iv) Water Level control	
	v) Conveyor Belt control	
	vi) Traffic Light control	
10	Mini project on developing simple Mechatronic system.(Group activity)	6
	Total	25

8. LEARNING RESOURCES

8.1Text Books

S. No.	Author	Title of Books	Publishers
1	W. Bolton	Mechatronics	Pearson Education Ltd
2	John W. Webb	Programmable Logic Controller	PHI
3	Andrew Parr	Hydraulics and Pneumatics	JAICO
4	Massimo Benzi	Make: Getting Started with Arduino	Maker Media

8.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	R. K. Rajput	Mechatronics	S. Chand Publications
2	K.Shanmugasundaram	Hydraulic and Pneumatic Controls	S. Chand
3	K.P. Ramachandran	Mechatronics	Wiley

(MC405) ENERGY CONVERSION

1. COURSE OBJECTIVES:

The students will be able to acquire knowledge about the processes and machines which convert energy from naturally available forms to useful forms viz mechanical power and electrical power. This knowledge is important in design, operation and maintenance of various kinds of mechanical engineering and technological products and processes.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course code &		Periods/Week		Total Hours	Examination Scheme					
course	course title		(in hours)			Theory Marks		Practical Marks		TotalMa rks
(MC405) CONVERSION	ENERGY	L	Т	Р	Н	TH	ТМ	TW	PR/OR	
		3	1	1	5	75	25	25	-	125

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC405CO1: Define various terms related to air compressors, IC engines, turbines and power plants.

MC405CO2: Explain the construction and working of air compressors, IC engines, turbines and power plants.

MC405CO3: Calculate the various performance parameters of an IC engine

MC405CO4: Distinguish between various prime movers and power plants.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	0	0	1	1	1	3	0
CO2	3	1	0	0	0	2	2	3	1
CO3	3	2	2	2	1	1	0	3	0
CO4	3	2	0	0	1	1	1	3	2

Relationship : Low-1 Medium-2 High-3

	ED COURSE CONTENTS / MICRO-LESSON PLAN	1	1	_
M = Marks	Thr = Teaching hours			
Unit		М	Thr	CO
1 Air Compre	essors	12	07	
1.1 Introduction	on and uses of compressed air			_
1.2 Classifica	tion of air compressors			-
1.3 Construct compressors	ction and working of reciprocating, centrifugal, axial flow and screw			CO1 CO2
1.4 Definition Volumetric Ef	as of Free Air Delivered, capacity of the compressor, piston displacement, ficiency			_ CO4
1.5 Advantag	es of multistage compression			_
1.6 Reciproca	ating compressed air motor			_
2 Internal C	ombustion (IC) Engines	24	16	
2.1 Introduction	on and classification			1
-	erminology, Functions of engine parts viz Cylinder, Cylinder head, Piston, Valves, Crank shaft and Connecting rod.			
2.3 Cycle of efficiencies	f operations - Otto and Diesel cycles, their P-V diagrams and thermal			-
2.4 Two-strok	e and four-stroke engines, construction and working			
2.5 Valve timi	ing diagrams			_ CO1 CO2
2.6 Difference	es between two-stroke and four-stroke, and between petrol and diesel engines.			_ CO3 CO4
2.7 Schemati Turbochargin			-	
2.8 Calculation				
Preparation	of heat balance sheet of an IC engine.			
3 Steam Turl	bines (No Numerical)	12	07	1
3.1 Steam no	zzle – Function & types of nozzles			CO1 CO2
	rbine - Classification of turbines, construction and working principle of impulse turbines.			C02

3.2 Compounding of steam turbines - Velocity compounding, Pressure compounding and			
Pressure-Velocity compounding.			
4 Energy Generation Through Power Plants	15	10	
Layouts, functions of different components and basic principle of operations of following power plants:			CO1
4.1 Thermal Power plant			CO2
4.2 Hydro-electric Power Plant			_ CO4
4.3 Nuclear Power Plant			_
4.4 Gas Turbine Power Plant			
5 Introduction to Non-Conventional Energy Sources	12	08	
5.1 Solar Energy			
5.1.1 Applications of Solar energy			
5.1.2 Working of Solar energy-based equipment viz water heater, cooker, solar lighting and solar still.			CO1
5.2 Wind Energy			CO2 CO4
5.2.1 Basic principles of wind energy conversion.			004
5.2.2 Main considerations in selecting a site for wind mills.			
5.2.3 Basic components of a Wind Energy Conversion system			
5.2.4 Advantages and limitations of wind energy conversion.			
5.3 Energy from Biomass			
5.3.1 Introduction			
5.3.2 Biomass conversion technologies			
5.3.3 Wet processes & Dry processes			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, classroom interactions, exercises and industrial visits.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
		of	
No		lectures	

Air Compressors Internal Combustion (IC) Engines Steam Turbines (No Numerical) Energy Generation Through Power Plants Non-Conventional Energy Sources Total

Directorate of Technical Education, Goa State

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical (anyone from sr. no 4 to 6)	Marks
1.	To demonstrate the construction and working of reciprocating, centrifugal and screw compressor.	05
2.	To dismantle and assemble a petrol engine or diesel engine	05
3.	To conduct a test on a petrol/diesel engine and determine its brake power,brake thermal efficiency and brake specific fuel consumption.Also, to prepare a heat balance sheet for any load.	05
4.	To demonstrate the construction and working of any one conventional power plant. (by making a visit to the plant)/video	05
5.	To demonstrate the construction and working of any one solar thermal equipment and any one solar photovoltaic equipment. (by making a visit to solar energy park)/video	05
6.	To demonstrate the construction and working of wind power plant or solar-wind hybrid power plant. (by making a visit to the plant)/video	05
7.	To demonstrate the construction and working of any one type of biogas plant. (video presentation)	05
	Total	25

9. LEARNING RESOURCES Text Books

S. No.	Author	Title of Books	Publishers
1	Late R. C. Patel & C. J. Karamchandani	Elements of Heat Engines – Vol I and Vol II	Acharya Publications
2	M. L. Mathur & R. P. Sharma	Internal Combustion Engines	Dhanpat Rai & Co.
3	N. K. Mangal	Diesel Engine Mechanics	Tata McGraw Hill
4	Arora & Domkundwar	Power Plant Engineering	Dhanpat Rai & Co.
5	G. D. Rai	Non-conventional Energy Sources	Khanna publication
6	Dr. B. H. Khan	Non-conventional Energy Sources	Tata McGraw Hill
7	K. M. Mittal	Non-conventional Energy System Principles, Progress and Prospects	Wheeler Publishing

(MC 404) Fluid Machinery

1. COURSE OBJECTIVES:

The students will be able to acquire knowledge to apply the concept introduced in Fluid Machinery to engineering applications such as turbo machinery and flow measurement. Fluid machinery plays an important role in the conversion of hydraulic energy to mechanical energy and vice-versa. Hydraulic turbines are used for meeting our day-to-day power demands. Also, different types of pumps are essential equipment in all the industries. Hydraulic systems have a wide range of applications in machine tools, material handling, marine, mining, metal processing, equipment and other fields.

2.	TEA	ACHING	AND	EXA	MINA	TION	SCHEME

IV									
Course code & course title		iods/W	/eek	Total Hours		Exar	nination	Scheme	
		(in hours)			Theory Marks		Practical Marks		Total
luid	L	Т	Р	н	ТН	ТМ	TW	PR/OR	Marks
ry	03	-	02	05	75	25	25	-	125
	de & tle	de & Per tle (i iluid L ry	de & Periods/M tle (in hour iluid L T ry	de & Periods/Week tle (in hours) iluid L T P ry	de & Periods/Week Total Hours tle (in hours)	de & Periods/Week Total Hours (in hours) Theory	de & Periods/Week Total Exar Hours (in hours) Theory Marks	de & Periods/Week Total Examination tle (in hours) Theory Marks Practi iluid L T P H TH TM TW	de & Periods/Week Total Hours tle (in hours) Theory Marks Practical Marks

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC404CO1: Define various terms related to fluid mechanics & fluid machineries.

MC404CO2: Explain fluid properties, fluid pressure, fluid flow, water turbine, pumps, accumulator & intensifier.

MC404CO3: Apply laws and theorems on statics and dynamics to calculate various parameters of fluids, flowing through pipes and various devices.

MC404CO4: Classify fluids, fluid flow, water turbines & pumps.

4. Mapping Course Outcomes with Program Outcome	s
---	---

+ Mapping Course outcomes with Hogram Outcomes											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2		
CO1	2	1	0	1	0	0	1	1	0		
CO2	2	1	1	1	1	1	2	2	1		
CO3	3	3	3	2	1	1	2	3	0		
CO4	3	2	1	1	2	1	3	1	1		

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN			
M = Marks Thr = Teaching hours			
Unit	М	Thr	СО
1 Introduction to fluid mechanics and Pressure Measurement	12	10	
1.1 Definition and classification of fluids, Branches of hydraulic -Hydrostatics &			_
Hydrodynamics			
1.2 Fluid properties			
Density, Specific gravity, specific weight - (Simple Numerical)			
Viscosity, surface tension, capillarity, compressibility (No Numerical)			
1.3 SI Units of Pressure, Pressure head, Atmospheric pressure, Positive and Negative			-
Gauge pressure, Absolute pressure (Simple Numerical on pressure, pressure head and			
conversion to equivalent heads of other liquids)			CO1 CO2
1.4 Pascal's Law and its applications.			CO3 CO4
1.5 Pressure measuring devices			-
Manometers-principle & working of piezometer tube, simple 'U' tube, differential 'U' tube			
and inverted 'U' tube manometers (Simple Numerical)			
1.6 Bourdon pressure gauge-its working principle & constructions, Calibration of pressure			
gauges			
2 Hydrostatics	12	06	
2.1 Total pressure, Centre of Pressure			
2.2 Pressure on plane surfaces immersed in liquid – horizontally, vertically & inclined to free			CO1
surface, calculation of total pressure and determination of position of centre of pressure for			CO2
circular, triangular & rectangular surfaces immersed vertically and inclined in one type			CO3
liquid. (Simple Numerical)			
3 Hydrodynamics	21	14	
3.1 Types of flow - steady; unsteady, - uniform, non-uniform, laminar and turbulent flow,			
compressible, incompressible flow.			
3.2 Continuity equation, Energies of liquid - pressure head, Datum head, velocity head,			CO1
Total energy of liquid, Bernoulli's theorem (Simple Numerical)			CO2
3.3 Application of Bernoulli's theorem: Pitot tube, Venturi-meter (Simple Numerical on			CO3
Discharge through Horizontal Venturi-meter)			CO4
3.4 Definition of orifice, types, Vena contracta, Hydraulic coefficients Cc, Cv and Cd,]
Discharge through a circular orifice. (Simple Numerical)			4
3.5 Laws of fluid friction, Reynold's number and it significance, Various losses in pipe flow-			
major and minor losses- loss of head due to entrance, sudden enlargement, sudden			
contraction. (Simple numerical on loss of head due to friction, sudden expansion and			
contraction)			

3.6 Hydraulic gradient line, Total energy line (No numerical)			
3.7 Water hammer in pipes - causes, effect and remedial measures			
4 Water Turbines (No numerical in this unit)	12	08	
4.4 Water Turbines: Classification of water-turbines			
4.5 Impulse turbines: Pelton Turbine-Construction and working			CO1
4.6 Reaction Turbines: Francis Turbine- construction and working, Kaplan turbine – Construction and working			CO2 CO4
4.7 Difference between Impulse turbine and Reaction Turbine			
4.8 Advantages and Disadvantages of Francis Turbine over a Pelton wheel			
5 Pumps, Accumulator and Intensifier (No numerical in this Unit)	18	10	
5.1 Centrifugal Pumps: Classification, construction & working, Types of casings, Types of impellers, Multistage centrifugal pumps, pumps in series, pumps in parallel, Priming, Cavitation, faults & remedies of centrifugal pumps. Definition of Static head, delivery head, manometric head, NPSH			
5.2 Reciprocating pumps: Classification of reciprocating pumps, Construction and working of single acting reciprocating pump, Slip and negative slip, Air vessels, functions of air vessels.			CO1 CO2 CO4
5.3 Difference between centrifugal pump and reciprocating pump.			
5.4 Construction, working and application of rotary vane pump, External Gear pumps		1	1
5.5 Construction, working and application of Accumulator and Intensifier			1
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to fluid mechanics and Pressure Measurement	10	12
2	Hydrostatics	06	12
3	Hydrodynamics	14	21
4	Water Turbines	08	12

5	Pumps, Accumulator and Intensifier	10	18
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical	Marks
1.	Measurement of pressure of water in a pipe by manometer	03
2.	Verification of Bernoulli's theorem	03
3.	Determination of coefficient of Discharge of Venturi meter	03
4.	To determine the relationship between loss of head and velocity for pipe flow	03
5.	Demonstrate the construction and operation of a Pelton Turbine	04
6.	Demonstrate the construction and operation of a Francis Turbine	03
7.	Demonstrate the construction and operation of a Centrifugal Pump	03
8.	Demonstrate the construction and operation of a Reciprocating Pump	03
	Total	25

9. LEARNING RESOURCES

Text Bo			
S. No.	Author	Title of Books	Publishers
1	R.K. Rajput	Fluid Mechanics and Hydraulic Machines	S. Chand Ltd
2	R.K. Bansal	Fluid Mechanics and Hydraulic Machines	Laximi Pvt. Ltd
3	R.S. Khurmi	A Text book of Hydraulics, Fluid Mechanics and Hydraulic Machines	S. Chand Ltd
4	P.N. Modi/S.M. Seth	Hydraulics and Fluid Mechanics including Hydraulic Machines	Rajsons Pvt. Ltd

(MC 406) Metrology and Quality Control

1. COURSE OBJECTIVES:

Metrology and Quality Control is concerned with application of measurements to manufacturing and other processes so that they can be suitably applied in industry to ensure quality product. As this subject form the basis for design of mechanical measurement systems, students will be acquire necessary knowledge and develop required abilities for performing the job effectively and efficiently.

2. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code &	Periods/Week		Total	Examination Scheme					
course title	(in	hour	s)	Hours	Hours Theory Marks Practical Marks		cal Marks	Total Marks	
(MC 406) Metrology	L	Т	Р	Н	TH	ТМ	TW	PR/OR	
and Quality Control	02	-	02	04	75	25	25	-	125

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC406CO1: Define various terms of measurement in metrology & quality control.

MC406CO2: Explain the instruments of linear, angular measurement & quality control charts.

MC406CO3: Select appropriate instruments used for appraisal of product quality.

MC406CO4: Apply the concept of Metrology & Quality control for real time measurement.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	2	1	0	1	2	1	2
CO2	2	2	2	2	1	2	3	1	2
CO3	3	3	3	3	1	2	3	2	3
CO4	3	3	3	3	1	2	3	2	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives				
Unit			М	Thr	СО	
1 Introductio	1 Introduction to metrology					
1.1 Definition	of metrology, precision and ac	ccuracy.				
1.2 Concept c	of Sensitivity, Readability, mag	nification, Repeatability, Reproducibility.			_	
1.3 Sources of	, , , ,	,,			CO1	
1.4 Calibration	n-Definition and need.					
2 (Standards	& Measuring Instruments)		12	06		
2.1 Standards	in measurement: Line standa	ard and end standard			CO1	
List of Linear	and angular measuring instrur	ments. (No description)			CO2 CO3	
2.2 Slip gauge	es, angle gauges, Sine bar. (n	umerical on angle gauges and slip gauges)				
2.3 Autocollin	nator, Spirit Level, Clinometer.				CO4	
3 Limits, F	its & Tolerances		12	06	- CO1	
3.1 Types of F	3.1 Types of Fits, Shaft & Hole basis system, Tolerances.					
3.2Limit gaug			CO2 CO4			
3.3Types of C						
3.4 Simple nu	merical on tolerances.					
4 Compara	itors and Testing		15	07		

MECHANICAL ENGINEERING CURRICULUM

4.1 Working Principle & comparison of Mechanical, pneumatic & Electrical-Electronic Comparators. Construction of Dial indicator, pneumatic & Electrical-Electronic comparator.			
4.2 Testing of straightness, flatness, parallelism, roundness & Surface finish.			C01
4.3 Gear Terminology and errors in gears, screw thread terminology and errors in threads. List of instruments used to measure gear & screw threads parameters. (No description)			- CO2 CO3 CO4
5 Quality Control	30	10	
5.1 Concept of quality, Characteristics of Quality, Quality Assurance. Total Quality			
Management: Principles of T.Q.M: a) Customer focus b) Commitment by top management c) Continuous improvement-PDCA d) Quality circles.			CO1
5.2 Statistical Quality Control: Control charts in S.Q.C, X-R chart, P-chart, (Steps in			CO2
preparation and numerical example). Acceptance sampling: Single and Double sampling			CO3
curve. Introduction to Six sigma.			CO4
5.3 Introduction to ISO 9000, Necessity and importance of I.S.O.			-
Total	75	32	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit No	Unit	Number of lectures	Marks
1	Introduction to metrology	3	6
2	Linear and Angular Measurements	6	15
3	Limits, Fits & Tolerances	6	15
4	Comparators and Testing	7	15
5	Quality Control	10	24
	Tota	I 32	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical	Marks
	Practical Title	
1	Use of basic measuring instruments. Surface plate, v-block, sprit level, angle	
	gauges, filler gauge, screw pitch gauge, radius gauge, Vernier calliper, micrometre,	
	Universal bevel protractor and slip gauges to measure dimension of given jobs.	
2	Use of Dial indicator to measure as a comparator to compare the given work piece	
	with a standard specimen.	
3	Use of Sine-Bars to measure angle.	
4	Study on Calibration of Vernier caliper	
5	Measurement of different Parameters of Gear.	
6	Measurement of different Parameters of screw thread	
7	Demonstration of optical flats using monochromatic light source.	
8	Demonstration of Tool Maker's microscope/Profile projector.	
9	To draw and interpret the control limit for variable measurement (X, R and P Chart).	
	Total	25

9. LEARNING RESOURCES 9.1Text Books

S. No.	Author	Title of Books	Publishers
1	R. K. Jain	Engineering metrology	Khanna Publisher, Delhi.
2	J.F.W. Galyer and C. R. Shotbolt	Metrology for Engineers	ELBS
3	K. J. Hume	Engineering Metrology	Kalyani publishers
4	I.C. Gupta	A text book of Engineering metrology	DhanpatRai and Sons,
5	M. Adithan and R. Bahn	Metrology Lab. Manual	T.T.T.I. Chandigarh.

9.2 Reference Books for further study

S.	Author	Title of Books	Publishers
No.			
6	M. Mahajan	Statistical Quality Control	DhanpatRai and
			Sons,
7	T.T.T.I. Chennai	Quality control	Tata McGraw Hill,
8	Juran U.M. and	Quality planning and	Tata McGraw Hill,
	Gryna	analysis	
9	National productivity council	Inspection and quality control	N.P.C., New Delhi.
10	Metrology and Precision Engineering	A.J.T.Scarr	Tata McGraw Hill

9.3 Indian and International codes needed S. No. Author Title of Books Publishers IS919-1993 Recommendation for limits. Fits and 1 B.I.S tolerances. IS2029-1962 2 **Dial Gauges** B.I.S 3 Slip Gauges IS2984-1966 B.I.S Isometric Screw Threads 4 IS4218 B.I.S 5 IS5359-1969 Sine Bars B.I.S

9.4 Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1	AmmarGrouss	Applied Metrology for Manufacturing	Wiley
		Engineering	
2	G.M.S de Silva	Basic Metrology for ISO9000	Butterworth-Heinemann
		Certification	

9.5 Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1	www.nptel.iitm.ac.in	Lectures in Metrology	
2			

SEMESTER V

(TR501) INDUSTRIAL TRAINING

1. COURSE OBJECTIVES:

The students need to have industry exposure, where they can experience real life situations related to Man, machine and materials. It is a Training programme designed to expose & prepare the students for the Industrial work situation. This exposure and hands on experience, will further encourage the students to take up the industrial projects and enhance their prospects for better employment in their relevant fields.

2. TEACHING AND EXAMINATION SCHEME

Semester V										
Course code & Periods/		iods/V	Veek	Total		Exa	minatio	on Scheme	e	
course title	(iı	n hou	rs)	Hours		Theory Marks		÷		Total Marks
(TR501)	L	Т	P	H	TH	TM	TW	PR/OR		
INDUSTRIAL TRAINING	-	-	-	15	-	-	70	30	GRADE	

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

TR501.CO1: Explain the organizational structure, plant layout and process flow of an industrial organization.

TR501CO2: Demonstrate interpersonal skills to achieve the desired objectives.

TR501CO3: Operate various machines, equipments, tools etc. wherever possible and applicable.

TR501CO4: Prepare technical documents related to the work undertaken or observed.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	2	1	1	2	2	2	2
CO2	2	2	1	2	1	2	2	1	3
CO3	3	3	2	2	2	2	3	2	2
CO4	3	2	2	3	2	2	3	2	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives]	
	Μ	Thr	CO
Students are required to study and have hands-on experience wherever			
possible in the following			
areas (depending on availability):			
1. Company Profile			
2. Organizational Structure			CO1
3. Company Product Range			CO2
4. Manufacturing Facilities Available /Services provided			CO3
5. Plant / Facility Layout			CO4
6. Operations / Production Processes			
7. Production Planning and Control			
8. Detail study of Latest Equipment/ Technologies Used			
9. Stores Functions			
10. Material Handling Systems/ Equipments			
11. Quality Management Systems / Functions			
12. Maintenance and Repair Practices			
13. Safety Practices / Safety Equipments			
14. Utilities			
15. Logistics			
16. Sales and Marketing			
17. Ethics, Statutory Rules and Regulations followed			
18. Product Design and Development			
19. Any other area specific to the Industry providing Training			

6. COURSE DELIVERY:

The Course will be delivered through placement of the students in various industries

7. TERM WORK & PRACTICALS

Evaluation Scheme							
	Т	PR/OR					
Attendance	Industrial	Institute	Training	Report	TOTAL		
Marks*	Mentor's	Mentor's	Report	Assessment	Marks		
	assessment	assessment		&			
	Marks	Marks		Seminar/Viva			
10	20	20	20	30	100		

* 01 mark shall be deducted for every Absence (with or without permission). **Daily Dairy**:

The daily dairy should-be maintained in a book. It should reflect the day to day activities performed by the student (including task, men and materials involved). It should be counter signed by the Industry Mentor. It will become the basis for writing reports on the complete training.

Training Report

The training report should be submitted by the training students should include the following salient points- Certificate from institute, Certificate of training from company, detailed write up as per daily dairy, detailed drawings, working drawings, photographs, safety precautions, techniques for work minimization on site, organizational chart, Importance of project to the society, special methods/techniques/equipment should be separately high lightened, including environmental aspects. The report should be informative and technical, typed with double spacing on good quality bond paper and bound. Assessment of Training Report be based on Knowledge, Presentation and Quality of contents and Sketches.

Note:

- a. Student/s undergoing Industrial Training shall follow Rules and Regulations of the Industry.
- b. Industrial Training will generally be organized and conducted in accordance with Industrial Training Manual duly prescribed by the Board.

Unit No	Name of the Unit	Teaching Hours	Marks				
1	PR/OR	08 weeks	30				
2	TW		70				
	Total	08 weeks	100				

8. SUGGESTED SPECIFICATION TABLE WITH MARKS & HOURS

Note:

1. For Industrial training Grades will be awarded based on marks scored as follows:

80% and above Marks – Grade 'A'

60% to 79% Marks – Grade 'B' 40% to 59% Marks – Grade 'C'

Marks below 40% - Grade 'D'

2. TW and PR/OR shall be separate heads of passing. Student has to secure minimum Grade 'C' for passing.

(CC601) INDUSTRIAL ORGANISATION AND MANAGEMENT

1. COURSE OBJECTIVES:

Management is the basic need of any organization. Organization consists of multiple activities which are to be systematically managed for effective output. The course covers various principles related to organization and management. The areas covered are finance, human resource, project management etc. After completion of the course, the student will be acquainted with management and other related aspects so that he/she will be able to apply this knowledge in order to achieve the organizational goals.

2. TEACHING AND EXAMINATION SCHEME

Course Code	Periods/ Week (in hours)		Total	Examination Scheme					
& Course Title			Hours	Theory Marks		Practical Marks		Total Marks	
CC601 INDUSTRIAL	L	Т	Р	Н	ТН	TM	TW	PR/OR	
ORGANISATION AND MANAGEMENT	3	-	-	3	75	25	-	-	100

3. COURSE OUTCOMES

On successful completion of the course, the student will be able to:

CC601.CO1: Describe types of business organizations.

CC601.CO2: Apply the principles of managing Men, Machines, and Materials in an industry.

CC601.CO3: Evaluate financial status of an industrial organization.

CC601.CO4: Develop problem solving skills in project management.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	0	0	0	0	1	0	0	2
CO2	2	1	1	1	1	2	2	0	3
CO3	3	2	1	2	3	3	2	0	3
CO4	3	3	2	2	2	3	3	2	3

4. Mapping Course Outcomes with Program Outcomes

Relationship: Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS/ MICRO-LESSON PLAN

M=Marks Thr= Teaching hours CO= Course Outcomes			
Unit	Μ	Thr	CO
1.BUSINESS ORGANIZATION	10	6	CO1
1.1 Types of business organizations: Individual proprietorship,			CO2
Partnership, Joint Stock Companies: Private Ltd and Public Ltd,			
Co-operative societies, Public sector			
1.2 Structure of business organization: Line organization,			
Functional Organisation, Line and staff organization, Project			
organization			
2. BUSINESS MANAGEMENT	16	9	CO1
2.1: Concept of management and administration, management as			CO2
an art and science, evolution and growth of scientific			CO3
management- contribution of F.W Taylor.			
2.2 Basic functions of management: planning, organizing,			
staffing, directing, controlling.			
Other functions: forecasting, coordinating and decision- making.			
2.3 Functions in Industry: Basics of			
Procuring, store- keeping, material handling, production, packing			
and forwarding, marketing and sales, supervision, research and			
development.			
2.4 Supervisory skills required in industry			
3.BASICS OF FINANCE	18	13	CO1
3.1 Sources of finance			CO2
3.2 Cost Concepts: Necessity of costing, elements of cost:			CO3
material, Labour and expense; prime cost, overhead cost, total			CO4
cost, And break- even analysis.			
3.3 Materials management: Inventory control-standard order,			
reserve stock, reorder point, lead time. Economic order quantity,			
ABC Analysis.			
Introduction to Just in time (JIT) system			
3.4 Depreciation: Definition and causes. Methods of calculating			
depreciation charges: Straight Line Method, Diminishing Balance			
Method, Sinking Fund method .(Simple Numericals)			
3.5 Obsolescence- definitions and reasons.			
3.6 Introduction to GST.			
4.HUMAN RESOURCE MANAGEMENT	21	14	CO1
4.1 Functions of Personnel Department: Human resource			CO2
planning, selection and recruitment, training, promotion and			CO3
transfer, welfare of employees.			CO4
4.2 Industrial Relations: Employer-employee relations, trade			
union, settlement of disputes of employees, collective bargaining,			

conciliation, arbitration, grievance handling mechanism.			
4.3 Wages and Incentives: Factors influencing wages, types of			
wage plans – time rate and piece rate, Incentive – objectives and			
types, individual and group incentive plan, characteristics of a			
good wage or incentive plan, difference between incentive and			
wage.			
4.4 Industrial Acts:			
Introduction to the following Industrial Acts:			
Industrial Disputes Act 1947/1956;			
The Indian Factories Act 1948			
The Workmen's Compensation Act 1923			
5.PROJECT MANAGEMENT	10	6	CO1
5.1 Introduction to Project Management			CO2
5.2 Network Analysis (Introduction to basic concepts with simple			CO3
Numericals)			CO4
CPM- Critical Path Method: Definition, network diagrams,			
critical path, advantages			
PERT- Programme Evaluation and Review Technique:			
Definition, network diagrams, advantages.			
Comparison of PERT and CPM.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Business Organization	6	10
2	Business Management	9	16
3	Basics of Finance	13	18
4	Human Resource Management	14	21
5	Project Management	6	10
	Total	48	75

Directorate of Technical Education, Goa State 8. LEARNING RESOURCES

Text Books

S.No	Author	Title of Book	Publisher
1	O.P. Khanna	Industrial Engineering and Management	DhanpatRai Publications
2	T.R.Banga ,S.C. Sharma	Industrial Organisation and Engineering Economics	Khanna Publishers
3	Awate,Chunawala, Patel,Bhandarkar, Sriniwasan	Industrial Organisation and Management	Vrinda Publication
4	Martand Telsang	Industrial Engineering and Production Management	S.Chand& Company Ltd

Directorate of Technical Education, Goa State (CC502) ESSENTIALS OF ENTREPRENEURSHIP DEVELOPMENT

1. COURSE OBJECTIVES:

Today Entrepreneurship is given importance by the government to bring the youth of our country to overcome the problem of unemployment and bring them in the main stream of global business to strengthen Indian economy by Make in India philosophy. Government has announced various financial schemes for young youth and women to support them for setting up an enterprise. To fulfill this, youth are to be prepared for setting an enterprise. The students undergoing this course will be able to develop entrepreneurial traits and confidence within themselves and choose entrepreneurship as a career to brighten their future.

2. TEACHING AND EXAMINATION SCHEME

Course Code	I	Periods/ Week (In Hours)		Total		Exai	nination S	cheme	
& Course Title	(I 1			Week Hours		Total Hours	Theory	Marks	Practical
(CC502) ESSENTIALS OF	L	Т	Р	Н	-	-	PR/OR	TW	
ENTREPRENEU RSHIP DEVELOPMENT	-	-	2	2	-	-	-	25	25

3. COURSE OUTCOMES:

CC502.CO1: Recognize the type of entrepreneur and enterprises.

CC502.CO2: Describe basic financial & legal aspects of business.

CC502.CO3: Conceptualize a business idea.

CC502.CO4: Develop the project report for new enterprise.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	0	0	0	2	3	2	0	2
CO2	2	0	0	0	0	3	2	0	2
CO3	0	1	2	0	0	0	2	0	2
CO4	3	2	2	0	2	0	2	0	2

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS

M=Marks	Phr= Practical hours	CO – Course Outcomes		7	
Unit			М	Phr	CO
1.INDIAN BUSIN	NESS ENVIRONMENT	ſ			
1.1 Introduction to	o Entrepreneurship Deve	elopment (EDP)			CO1
1.2 Brief details of	of following terms :			4	
		es, Environmental policy, Effects			
U 1	1 0 1	fects of national budgeton start-			
ups and businesses					
	PES OF BUSINESSES				
	f following businesses:				CO1
-	-	onal and Non-seasonal business,		6	
		t base business, Commodity and			
		ness, b2b and b2c business,			
	etween Subsidiary and As	ssociate company			
3. SELECTION (a 6 1
• •	-	lysis, factors to pick up a Sector,			CO1
Data collection of		11 1 11.		4	CO2
	es: Sector rotation, Gross				
statement.	Outline of balance sheet	, profit-loss statement, cash flow			
	a on following factors:) Markat growth ii) Saatar			
consolidation.	s on tonowing factors. I) Market growth ii) Sector			
3.5 Brief details of	of following:				
	0	Pricing power, Debt, working			
-	-	h conversion cycle, Companies			
with peer group.	eupitur emproyeu, eus	in conversion eyere, companies			
4 SETTING UP (OF BUSINESS				
4.1 Various Govt	depts. and organization s	supporting business ideas.			CO1
4.2 Methods to r	aise capital (difference b	between Banks and NBFC).		10	CO2
4.3Factors in ma	chine, material, manpow	ver procurement, advertising,			CO3
product specialty	· •				
	-	ses (MSME), Govt support for			
	Limited and Public Limi				
		ering for GST and go ahead,			
4.6Various incom	,				
	•	ons, various permissionsrequired			
to set up business.					

5. EXPANSION OF BUSINESS			
5.1 Types of investors: angel investors, venture capitalist, promoters.		8	CO1
5.2 Terminology:			CO2
5.2.1 EPS, EPS growth, P/E ratio,			CO3
5.2.2 Market capital, paid up capital, authorized share capital,			CO4
5.2.3Corporate governance, Related party transactions, business insiders,			
assets and inventory turnover, break even analysis, brown field and green			
field expansion.			
5.3 Listing start up on stock exchange &Govt support.			
5.4 Business report writing, Reading of Red Herring prospectus			
Total	25	32	

6. COURSE DELIVERY:

Videos / Lectures/ Practicals /Expert lectures / Industry visits/ documentaries/movies

Suggested expert talk on

- various Govt schemes
- GST
- Financial literacy
- Any relevant topic

7. SPECIFICATION TABLE FOR PRACTICALS

Unit No.	Торіс	Teaching Hours/ Semester
1	Indian business environment	4
2	various types of businesses	6
3	selection of business	9
4	Setting up of business	9
5	Expansion of business	4
TOTAL		32

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICAL HOURS

No	Classroom Assignments	Marks				
1.	Prepare a Case Study on leading enterprise or small-scale unit	6				
2.	Prepare a report on various government schemes for startup.					
3.	Prepare SWOT analysis for a new business idea.	5				
4.	Prepare Project Report for a new business idea.	10				
	OR					
1.	Preparing a project report on basis of draft Red Herring prospectus	25				

S.No.	Author	Title of Books	Publisher			
1.	Sharadjawadekar, shobhadodlani,	Business entrepreneurship	Suvicharprakashanmandalpune			
2.	S.S. Khanna	Entrepreneurship development	S. Chand & Co. Ltd, New Delhi,			
3.	Vasant Desai	Management of small-Scale Industry in India	Himalaya Publishing House			
4.	DilipSarwate	Entrepreneurial development Concepts and practices	Everest Publication House, Pune			
5.	CB Gupta and P Srinivasan	Entrepreneurship Development	S. Chand and Sons, New Delhi			

9. LEARNING RESOURCES

https://ncert.nic.in/ncerts/l/leac203.pdf

https://ncert.nic.in/ncerts/l/leac204.pdf

https://www.wirc-icai.org/images/publication/IND-AS-BOOK.pdf

https://cma.org.sa/en/Awareness/Publications/booklets/Booklet_4.pdf

https://www.icsi.edu/media/portals/25/IPO.pdf

https://old.mu.ac.in/wp-content/uploads/2017/01/FINANCIAL-STATEMENT-ANALYSIS.pdf

https://ncert.nic.in/textbook/pdf/jess202.pdf

https://dea.gov.in/sites/default/files/

https://dea.gov.in/monthly-economic-report-table

https://rbidocs.rbi.org.in/rdocs/Publications/PDFs/0HSIE_F.PDF

https://ncert.nic.in/textbook/pdf/lebs202.pdf

https://www.oecd.org/industry/inv/investmentfordevelopment/33806126.pdf

https://www.youtube.com/watch?v=NV8Ew6PcQhY

file:///C:/Users/User/Downloads/1-s2.0-S0970389617304664-main.pdf

(MC 501) THEORY OF MACHINES

1. COURSE OBJECTIVES:

This course will enable the student to understand the basic concepts related to mechanisms and machines. The mechanisms, which form the basis for machines, are built from linkages, gears, cams and followers, belt drives, etc. As a technician, one should have the necessary knowledge and skills about the mechanisms, their fabrication and operation. This course deals with the study of different mechanisms and their applications. Laboratory practice will help in consolidating the theory learnt.

2. TEACHING AND EXAMINATION SCHEME

Semester V										
Course code &	Per	Periods/Week			Examination Scheme					
course title	(i	(in hours)		Hours	Theory		Practical		Total	
					Marks		Marks		Marks	
MC 501	L	Τ	P	H	TH	TM	TW	PR/OR		
THEORY OF	3	-	2	5	75	25	25	-	125	
MACHINES										

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC 501.CO1: Describe different machine elements and mechanisms.

MC 501.CO2: Develop cam profile for a given application.

MC 501.CO3: Select suitable mechanisms and mechanical drives for given application.

MC 501.CO4: Perform analysis of mechanical drives, dynamometers, brakes and rotating masses.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2	
CO1	3	1	1	1	1	1	2	2	1	
CO2	3	3	3	1	1	1	2	2	1	
CO3	3	2	3	2	3	2	2	3	2	
CO4	3	3	3	3	3	2	2	3	2	

Relationship : Low-1 Medium -2 High -3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes		7	
Unit	Μ	Thr	CO
1.KINEMATICS OF MACHINES			
 1.1 Definition: Kinematics, Dynamics, Statics, Kinetics, kinematic link, kinematic pair and its types, constrained motion and its types, kinematic chain and its types, degrees of freedom, mechanism, inversion, machine and structure 1.2 Common mechanisms – Bicycle free wheel sprocket mechanism, Geneva mechanism, Ackerman steering gear mechanism, Foot operated air pump mechanism 		08	CO1 CO3
2.CAMS AND FOLLOWERS			
	15	08	CO1
2.1 Concept, definition and application of cams and followers			CO2
2.2 Classification of cams and followers			CO3
2.3 Follower motions and their displacement diagrams – Uniform			
velocity, Simple Harmonic Motion (SHM), Uniform Acceleration			
and Retardation			
2.4 Drawing of profile of radial cam with reciprocating knife edge			
and roller followers with and without offset for the above motions			
3.FLYWHEEL, GOVERNOR AND BALANCING			
3.1 Definition of Piston effort, Crank effort	_		
,	-		
3.2 Crank effort diagram of Single cylinder four stroke cycle I. C. engine	18	10	CO1
3.3 Function of flywheel	10	10	CO1 CO3
3.4 Coefficient of fluctuation of energy, Coefficient of fluctuation of	-		CO4
speed and its significance			01
3.5 Function of governor	_		
3.6 Classification of centrifugal governor	-		
3.7 Construction and working of Watt and Porter governors	-		
3.8 Terminology of governors: Sensitiveness, Stability, Isochronism,	-		
Hunting of governor, Governor effort and power			
3.9 Comparison between flywheel and governor	Ì	Ì	
(No mathematical treatment and Numericals)			
3.10 Need for balancing	1		
3.11 Balancing of revolving masses in a single plane (Analytical and			
graphical methods)			
4.POWER TRANSMISSION DEVICES			
			CO1
4.1 Introduction: Types of drives – Belt, chain and gear drives	15	12	CO3
4.2 Belt drives: Flat belt, V-belt and their applications, Types of belt			CO4
drive - Open and Crossed, Belt materials, Law of belting, Angle of			
lap, Calculation of belt length (No derivation of formula), Belt slip and			
creep, velocity ratio, Ratio of tensions on tight and slack sides forflat			
belt and V-belt, Effect of centrifugal tension on power transmission,			
Condition for maximum power transmission, Initial			
tension (Simple numericals)			

 4.3 Chain drive: Introduction, Types of chains, Comparison of belt and chain drives 4.4 Gear drives: Introduction, Spur gear terminology, Law of gearing, Types of gears and their selection for different applications, Gear trains – Simple and Compound, Train value and Velocity ratio for 			
Simple and compound gear trains (Simple Numericals)			
5.BRAKES AND DYNAMOMETERS			
 5.1 Definition, classification and comparison of brakes and dynamometers 5.2 Construction and working of brakes: (i) Block brakes – Single block, double block, (ii) Band brakes, (iii) Disc brake, (iv) Internal expanding shoe brake, (v) Hydraulic brake 5.3 Concept of self-locking and self-energizing brakes 5.4 Calculation of braking effort and braking torque for block brakes and band brakes only 5.5 Construction and working of dynamometers: Absorption type – Prony brake dynamometer, Rope brake dynamometer, Belt transmission dynamometer 5.6 Procedure to measure brake power using rope brake dynamometer (No Numericals on dynamometers) 	15	10	CO1 CO3 CO4
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and hand outs

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Kinematics of machines	08	12
2	Cams and followers	08	15
3	Flywheel, governor and balancing	10	18
4	Power transmission devices	12	15
5	Brakes and dynamometers	10	15
	Total	48	75
Directorate of Technical Education, Goa State 8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Nos. 1 & 4 compulsory and any four from nos. 2, 3, 5, 6,7,8 & 9)	Marks
1	Mini project on inversions of kinematic chains (Four bar chain, Single Slider crank chain, Double slider crank chain)	05
2	Find the ratio of time of cutting stroke to the time of return stroke for quick return motion of a shaper	04
3	Sketch and describe working of bicycle free wheel sprocket mechanism	04
4	Draw the profile of radial cam for the given motion of follower (At least three problems)	04
5	Determine the radius of rotation of flyball for different speeds of governor and draw a graph of radius of rotation versus speed	04
6	Comparison of power transmission systems	04
7	Dismantling and assembly of mechanically operated braking mechanism for two wheelers	04
8	Determination of brake power using rope brake dynamometer	04
9	Determine graphically balancing of several masses rotating in a single plane	04
	Total	25

9. LEARNING RESOURCES

9.1Text Books

S. No.	Author	Title of Books	Publishers
1	R. S. Khurmi and J.	Theory of Machines	Eurasia Publishing
	K. Gupta	-	House Pvt. Ltd.
2	S. S. Rattan	Theory of Machines	McGraw Hill
			Education (India)
			Pvt. Ltd.
3	P. L. Ballaney	Theory of Machines and	Khanna Publishers
		Mechanism	
4	A. Ghosh and A. K.	Theory of Mechanisms and	Affiliated East West
	Mallik	Machnies	Press Pvt. Ltd.

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Thomas Bevan	Theory of Machines	C. B. S. Publishers
2	Shah and Jagdish Lal	Theory of Machines	Metropolitan Book
			Co. Pvt. Ltd.
3	J. E. Shigley	Theory of Machines and Mechanisms	McGraw Hill
4	P. C. Sharma, Purohit	Theory of Machines	PHI

Directorate of Technical Education, Goa State 9.3 Internet and Web Resources

S. No.	URL	Title	Publishers
1	https://swayam.gov.in/	SWAYAM Platform	MHRD/ AICTE
2	https://onlinecourses.nptel.ac.in/	NPTEL courses	IITs and IISc

(AC101) ESSENCE OF INDIAN KNOWLEDGE AND TRADITION

1. COURSE OBJECTIVES:

This course aims at imparting basic principles of thought process, reasoning and inferencing by human being. Sustainability is at the core of Indian Traditional Knowledge Systems connecting society and nature. Holistic life style of Yogis, science and wisdom capsules in Sanskrit literature are also important in modern society with rapid technological advancements and societal disruptions. The course thus focuses on introduction to Indian Knowledge System, Indian perspective of modern scientific world-view, basic principles of Yoga and holistic health care system.

2. TEACHING AND EXAMINATION SCHEME

Semester	V										
Course code &		Periods/Week			Total	Examination Scheme					
course title		(in hours)		Hours	Theory Marks		Practical Marks		Total Marks		
(AC101) Essence	of	L	Т	P	H	TH	TM	TW	PR/OR		
Indian Knowledg and Tradition	ge	2	-	-	2	-	-	-	-	-	

Course Content:

Basic Structure of Indian Knowledge System:

(i) वेद, (ii) उत्तवेद (आयुवेद, धनुवेद, गन्धवेद, स्थावल्य आदद) (iii) वेदाांग (शिक्षा, कल्च, ननरुत, व्याकरण, ज्योनतष छांद], (iv) उत्ताइग (धर्म सि, हीशांसा, नुराण, तकमिास)

- ۲ Modern Science and Indian Knowledge System
- Ϋ́oga and Holistic Health care
- ۲ Case Studies.

S. No.	Title of Book	Author	Publication
1.	Cultural Heritage of	V.	Bharatiya Vidya Bhavan,
	India-	Sivaramakrishna	Mumbai,
	Course Material		5th Edition, 2014
2.	Modern Physics and	Swami	Bharatiya Vidya Bhavan
	Vedant	Jitatmanand	
3.	The wave of Life	Fritzof Capra	
4.	Tao of Physics	Fritzof Capra	
5.	Tarkasangraha of Annam	V N Jha	Chinmay Foundation,
	Bhatta, Inernationa		Velliarnad,
			Amaku,am
6.	Science of Consciousness	RN Jha	Vidyanidhi Prakasham, Delhi,
	Psychotherapy and Yoga		2016
	Practices		

SEMESTER VI

(MC603) PRODUCTION MANAGEMENT

1. COURSE OBJECTIVES:

Any technician comes across various problems in manufacturing industry. They should have basic knowledge of how to apply techniques of industrial engineering and production management in various industry related problems so that production is achieved in efficient way and also customer satisfaction. The course is designed to develop necessary competencies in the students to apply the principles of work study and production management in selecting the most economic method for execution of work resulting in improving productivity of the organization.

2. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Course code &		Periods/Week			Total	Examination Scheme				
course title		(in hours)		Hours	Theory Marks		Practical Marks		Total Marks	
(MC603) PRODUCTIO	ON	L	Т	Р	Н	ТН	TM	TW	PR/OR	
MANAGEMI		3	-	2	5	75	25	25	-	125

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC603. CO1: Describe functions of production management.

MC603. CO2: Conduct Method study and Time study for a given production process.

MC603. CO3: Develop a plant layout for a given production process

.MC603. CO4: Prepare a production plan based on available data.

4. Mapping Course Outcomes with Program Outcomes

	5								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	1	1	1	1	1	2
CO2	2	1	1	1	1	1	1	1	3
CO3	2	2	2	3	2	2	2	2	3
CO4	2	3	3	2	2	2	2	2	3

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	Μ	Thr	СО
1 PRODUCTIVITY			
1.1 Introduction, Production and Productivity, importance and	09	06	CO1
benefits of Productivity, Factors influencing productivity.			
1.2 Partial productivity measures (PPM), advantages and limitations	_		
of PPM.			
1.3 Productivity improvement techniques.			
2 WORK STUDY			
2.1 Introduction, Work study procedure, Human consideration in			
Work Study, work content, work study as a tool to improve	01	1.4	001
productivity.	21	14	CO1
2.2 Method study			CO2
Introduction, Objectives, Steps involved in Method study, Selection			
of job for method study.			
2.3 Recording techniques: -			
Operation process chart, Flow process chart, Two handed Process			
Chart, Multiple activity chart, SIMO chart, Flow and string			
diagram, Micro-motion study, Therbligs, Cycle and Chrono cycle			
graph, Principles of motion economy.	_		
2.4 Work Measurement			
Objectives, Steps in time study, Types of Elements, Time Study			
equipment's (stop watch), Methods of timing, Performance rating			
(methods not to be taught), Allowances and its types, Simple			
Numerical on computation of Standard time, Basic concept of Work			
sampling and PMTS.			
3 PLANT LAYOUT			
3.1 Objectives, Importance and Advantages of Plant layout, factors	09	06	CO1
influencing Plant layout.			CO3
3.2 Types of Plant Layout- Process, Product, Fix position layout,			
comparisons, advantages, limitations and applications.			CO4
4 PRODUCTION PLANNING			
4.1 Introduction, scope, objectives and functions of management.	-		
Production system, Types of production systems (Job order, Batch			
& Continuous).	21	13	CO1
1.2 Production Planning and control (PPC):- Introduction,	1		CO3
Objective, Functions of PPC.			
4.3 Capacity Planning - Plant capacity, Machine capacity &			CO4
Machine selection, Measures of capacity, Capacity requirement			

Directorate of Technical Education, Goa State

	uou	Diate	
planning (CRP).			
4.4 Brief Introduction to Aggregate planning and Master production			
schedule (No Numerical).			
4.5 Material Requirement Planning (MRP) - Introduction,			
objectives.			
4.6 Process Planning (P.P): - Introduction, Factors affecting P.P,			
Steps in P.P			
4.7 Introduction to six sigma and Lean manufacturing			
5 FORECASTING			
5.1 Need of Demand forecasting.			
5.2 Classification of forecasting methods: -	15	09	CO1
• Judgemental Techniques: -Opinion survey method, Market	15	09	CO4
research, Delphi technique.			
• Time Series Analysis: -Moving average forecasting,			
Exponential smoothing method.			
(simple Numericals on Moving average forecasting and Exponential			
smoothing methodology)			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
NT.		of	
No		lectures	
1	Productivity	06	09
2	Work Study	14	21
3	Plant Layout	06	09
4	Production planning	13	21
5	Forecasting	09	15
	Total	48	75

Directorate of Technical Education, Goa State 8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1	Case Study on Productivity	3
2	Assignments on Method Study Techniques	5
3.	Numericals & one case study on stop watch Time Study	3
4.	Plant Layout	3
5.	Problems on Forecasting Methods	5
6.	Assignment on Production Planning	3
7.	Problems on Line Balancing	3
		25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Martand Telsang	Industrial Engineering and Production management	S. Chand
2	M. Mahajan	Industrial Engineering and Production management	Dhanpat Rai
3	O.P. Khanna	Industrial Engineering and Management	Dhanpat Rai & Sons
4	ILO	Work Study	ILO Geneva

(CC 602) BUSINESS COMMUNICATION

1. COURSE OBJECTIVES:

The students will able to:

- 1. Use speaking, writing and presentation skills to communicate effectively.
- 2. Develop business etiquettes, manners, grooming and improve personal appearance
- 3. Improve non-verbal forms of communication.

2. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Course code &		Periods/Week			Total	Examination Scheme				
course title		(iı	n hou	rs)	Hours	urs Theory 1		Pra	actical	Total
						Marks		Marks		Marks
(CC 602) BUSIN	IESS	L	Т	P	H	TH	TM	TW	PR/OR	
COMMUNICAT	ΓΙΟΝ	-	-	2	2	-	-	25	25	50

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC 602.CO1: Apply principles of effective communication in business environment

CC 602.CO2: Use ICT in business communication effectively.

CC 602.CO3: Demonstrate soft skills required in business environment.

CC 602.CO4: Prepare Technical Writing for various functions of business communication.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	0	1	0	1	2	2	0	1
CO2	2	2	2	1	2	2	3	1	2
CO3	2	2	2	1	2	2	3	1	2
CO4	1	1	1	1	2	3	3	0	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

DETAILED COURSE CONTENTS / MICRO-LESSON PLAN	<u> </u>		
M = Phr =Practical hours CO = Course Outcomes Marks			
Unit	Μ	Phr	СО
1 COMMUNICATION SKILLS AT WORKPLACE			
 1.1 Principles of communication in business Importance of communication in a business organization, types of communication (formal and informal Internal and External Communication), Channels of communication: Vertical, Horizontal, Diagonal, Grapevine 1.2 Modern Office technology for communication: email communication and sending text (etiquettes, components, tips for writing effective emails, spellcheck), internet and use of social media for work (to communicate, 		04	CO1 CO2 CO3 CO4
search for information about suppliers, specifications, networking, quick feedback, e-commerce, video conferencing)			
2 SEMINARS		1	
2.1 Organization of seminars and workshops Organizers role: planning, objectives, topic selection, planning the date, time, venue, creating event organization material: creating facebook page, WatsApp group, invitations, advertisement on pamphlet, hand-outs, signage, name badges, registration form, press note, inviting key note speaker, schedule		06	CO1 CO2 CO3 CO4
2.2 Presentation			
Speakers role: Gathering relevant material, organization of the material, knowing the occasion and audience, preparing handouts for distribution, time management, interaction with audience, non-verbal communication. (Checklist of significant aspects of oral presentation to be provided)			
2.3 Role of audience			
Audience's role: Listening effectively and asking relevant questions, note taking			
3 TECHNICAL WRITING			
3.1 Reports Understanding objective report writing, types of reports, parts of a formal report, illustrations inspection reports: procedure and format, Project Report		10	CO1 CO2 CO3 CO4
3.2 Business letters Sales letters: parts of sales letter complaint letters: elements of a complaint letter adjustment letters: elements of an adjustment letter			

3.3 Tenders			
procedure, Preparation, Types of tenders, Single tender, limited			
tender, Open tenders, government e tender, structure of a tender			
document, tender notice, terms and conditions, payment details,			
specification, documents to be submitted, drafting			
advertisement for tender.			
3.4 Generic notices, notice for meetings: purpose, format of notice			
for meeting, agenda, quorum and writing minutes			
4 JOB INTERVIEWS			
4.1 Job application and resume		06	CO1
draft job application and resume, draft letter of acceptance and		00	CO2
cold contact letter			CO4
4. 2 Job interviews			001
preparing for job interview, guidelines on facing job			
interviews, mock interviews			
5 SOFT SKILLS			
5.1Business etiquettes			
Importance of business etiquettes and manners, Tips for good			
business etiquettes		06	CO1
5.2 Nonverbal Communication			CO2
grooming, personal appearance, hygiene, deportment and body			CO3
language			CO4
5.3 Interpersonal skills			
Leadership skills, team work, active listening			
5.4 Critical thinking			
How to improve critical thinking, tips for critical thinking			
Total		32	-
	1		L

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
		25
	Practical Title	
1.	Modern office technology	03
2.	Seminar	03
3.	Technical writing	10
4.	Job interviews	04
5	Soft skills	05
	Total	25
No	Class room Assignments	
1	Email communication	
2	Power point presentation	
3.	drafting seminar invites	
4.	Drafting hand outs for seminars	
5	Drafting sales letter	
6	Drafting complaint letters	
7	Drafting adjustment letters	

MECHANICAL ENGINEERING CURRICULUM

Directorate of Technical Education, Goa State

Drafting tender notice	
Filling maintenance reports	
Drafting inspection reports	
Drafting abstract	
Drafting notice for meetings	
Drafting agenda of meetings	
Drafting minutes of meeting	
Drafting resume and job application	
Drafting letter of acceptance	
Drafting cold contact cover letter	
Group discussions	
Debates	
Group presentations	
	Filling maintenance reportsDrafting inspection reportsDrafting abstractDrafting notice for meetingsDrafting agenda of meetingsDrafting minutes of meetingDrafting resume and job applicationDrafting letter of acceptanceDrafting cold contact cover letterGroup discussionsDebates

8. LEARNING RESOURCES

8.1 Reference books

S. No.	Author	Title of Books	Publishers
1	P.Prasad, Rajendra k. Sharma	The functional aspects of communication skills	s.k. kataria &sons
2			Sultan chand & sons
3	Grount Taylor	English conversation practice	Tata MCgraw Hill
4	R.C. Sharma & Krishna Mohan	Business Correspondence & report writing	Tata MCgraw Hill

(MC602) MECHANICAL ENGINEERING PROJECT

1. COURSE OBJECTIVES:

After learning various mechanical engineering subjects, it is time to apply this knowledge to real life situations by study, analysis and modification of prevalent processes and machines, equipment or instrument, design simple mechanical systems, identify, define & solve problems, make new products, etc. This may be done individually or in groups. This is known as Project work. Thus, it is a purposeful time bound student activity to accomplish higher level cognitive, psychomotor and affective domain learning.

2. TEACHING AND EXAMINATION SCHEME:

Semester	VI									
Course co	Course code &			Week	Total		Exan	nination	n Scheme	
course t	itle	((in ho	urs)	Credits		Theory Practica Marks Marks		Practical Marks	
MC60	2	L	Т	P	Н	TH	TM	TW	PR/OR	
MECHAN ENGINEE PROJE	RING	-	-	6	6	-	-	50	50	100

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC602.CO1: Identify the need for Project

MC602.CO2: Conduct literature Survey.

MC602.CO3: Apply Engineering Knowledge for finding optimal solution.

MC602.CO4: Develop the project

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	3	1	1	2	3	3	3	2
CO2	3	1	1	2	1	3	3	3	2
CO3	3	3	3	3	2	3	3	3	2
CO4	3	2	3	3	3	3	3	3	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	М	Thr	СО
1. PRODUCT MODIFICATION			CO1 CO2
Any part, machine or equipment may be studied for its operating controls, energy usage, work performance in order to improve its performance, reduce cost, save energy, increase output, improve any other quality parameters, etc.			CO2 CO3 CO4
2. PROCESS MODIFICATION			CO1
Any process in industry, commercial organisation or service sector may be studied for its sequence of activities, man power deployment, operating expenses, energy usage, work performance in order to improve its performance, reduce cost, save energy, increase output, improve any other quality parameters, etc.			CO2 CO3 CO4
3. LAY OUT MODIFICATION			CO1
The arrangement of facilities in industry, commercial organisation or service sector may be studied for its usefulness in terms of movements of materials, men, operation & maintenance, etc in order to improve its performance, reduce cost, reduce transportation costs, increase production, improve any other quality parameters, etc.			CO2 CO3 CO4
4. PLANT MODIFICATION			CO1
Study of a plant and its accessories in order to improve efficiency, reduce down time, increase production, improve any other quality parameters, etc. The plant may of any industry- Ice Plant, Cold storage, Milk Dairy, Mineral water, food processing, ore processing, water filtration, air conditioning, ventilation, etc.			CO2 CO3 CO4
5. MAKE NEW PART, MECHANISM OR PRODUCT			
Use creative ideas to make new object by using available materials, tools, equipment, etc. in order to reduce price, work performance, energy efficiency, etc.			CO1 CO2 CO3 CO4
Make a new / modified part design or drawing with 3D modelling in computer software using any design software.			
Total			

6. SPECIFICATION TABLE FOR PROJECT REVIEW

No	Project activity	Marks
1.	Selection area of project	5
2.	Literature survey, study of component, equipment, machine, plant, layout, etc.	5
3.	Defining problems, setting goals.	10
4.	Generating alternatives	5
5.	Developing a useful solution	10
6.	Testing a useful solution for feedback	5
7.	Report writing	10
	Total	50

7. PROJECT REVIEW SCHEDULE

SR.NO	REVIEW NO	WEEK OF SEMESTER
1	Review 1 (For Project Activities 1,2,3)	Second Week
2	Review 2(For Project Activities 4,5)	Seventh Week
3	Review 3(For Project Activities 5,6)	Twelfth Week
4	Review 4(For Project Activities 6,7)	Fifteenth Week

Note: In the project review assessment to be done based on

- 1) Presentation made by the students showing the progress of their project.
- 2) Involvement and contribution of individual student in project group.
- 3) Innovative ideas in project.
- 4) Project Guide should strictly follow the project review schedule.

(MC601) MACHINE DESIGN

1. COURSE OBJECTIVES:

While working in his/her field of work as a Mechanical engineer, student should have working knowledge of design principles which will assist him/her in designing simple and essential machine components as per requirements. This course will enable him to develop analytical abilities to give solutions to engineering design problems.

2. TEACHING AND EXAMINATION SCHEME:

Semester	Ι											
Course cod	Course code &		iods/V	Veek	Total	Examination Scheme						
course tit	course title		n hou	rs)	Hours	The	ory	Pra	actical	Total		
						Marks		Marks Marks		Marks		Marks
MC 601	l	L	Т	Р	H	TH	TM	TW	PR/OR			
MACHIN	NE	4	-	2	6	75	25	25	25	150		
DESIGN	N											

* Note: 1) Standard data in respect of design of shafts, keys, screw threads and springs to be provided during Theory Examination.

2) Duration of Theory Examination is 04 hours.

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC601.CO1: Apply the steps in design of machine parts.

MC601.CO2: Select the bearing for a particular application from manufacturer's catalogue.

MC601.CO3: Use design data books and different codes.

MC601.CO4: Prepare detailed and assembly drawings of designed machine parts.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	1	1	1	2	3	1
CO2	3	2	3	2	2	1	2	3	1
CO3	3	2	2	3	2	1	2	3	1
CO4	3	3	3	2	2	2	2	3	1

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	Μ	T hr	CO
1 INTRODUCTION TO DESIGN			
1.1 Machine Design philosophy and procedures	10	8	CO1
1.2 General Considerations in Machine Design, Factor of safety and			CO2
factors governing the selection of factor of safety			
1.3 Fundamentals: - Types of loads, concept of stress, strain, Stress-			
Strain Diagram for ductile and brittle materials, Types of Stresses,			
such as Tension, Compression, Shear, Bearing Pressure Intensity,			
Crushing, Bending and Torsion, creep Strain and Creep Curve			
1.4 Fatigue, S-N curve, Endurance limit			
1.5 Stress Concentration- Causes & Remedies			
Properties of Engineering Materials, Designation of materials as per			
IS and introduction to International Standards & advantages of			
Standardization, use of design data book, use of standards in design			
and preferred numbers series.	-		
1.7 Theories of Elastic Failures-maximum Principal Stress theory			
and maximum shear stress theory. 2 DESIGN OF SIMPLE MACHINE PARTS			
2.1knuckle joint	12	10	CO1
2.2 Design of levers: -Right angled Bell crank Lever	12	10	CO1 CO2
2.3 Design of C- Clamp, Offset link, arms of pulley.	-		CO2
3DESIGN OF SHAFTS, KEYS AND COUPLINGS, POWER			001
SCREWS, SPRINGS AND FASTENERS			
3.1 Types of shafts, Shaft materials, Standard sizes	1		
3.2 Design of shafts (Hollow and solid) using strength and rigidity			
criteria			
3.2 ASME code of design for line shafts supported between			
bearings with one or two pulleys in between.			
3.3 Design of sunk keys, Effect of keyways on strength of shaft			
3.4 Design of couplings- Muff coupling, Protected type Flange			
Coupling.	10	26	001
3.5 Thread Profiles used for Power Screws, relative merits and	42	36	CO1
demerits of each			CO2
3.6 Torque required to overcome thread friction, self-locking and			CO3 CO4
overhauling conditions.	-		C04
3.7 Efficiency of power screws, types of stresses induced	-		
3.8 Design of Screw Jack (limited to screw, nut, Head & lever)	-		
3.9 Classification and applications of springs, Spring-Terminology,			
Materials and specifications.			
Stresses in springs, Wahl's correction factor, Deflection of springs,			
Energy stored in springs 2.10 Design of Holicel tension and compression springs subjected to	-		
3.10 Design of Helical tension and compression springs subjected to uniform applied loads, Leaf springs-construction and application			
unitorn applied loads, Lear springs-construction and application			

Directorate of Technical Education, Goa State

	ava	Diale	
3.11 Stresses in Screwed fasteners, bolts of uniform strength.			
3.12 Design of bolted joints subjected to eccentric loading a) load			
acting parallel to the axis of the bolt. B) load acting perpendicular to			
the axis of the bolt.			
3.13 Design of parallel and transverse fillet welds, axially loaded			
unsymmetrical section, Merits and Demerits of screwed and welded			
joints.			
4 ANTIFRICTION BEARINGS			
4.1 Classification of bearings-Sliding contact and rolling contact	06	05	CO1
4.2 Terminology of Ball bearings- life load relationship, basic static			CO3
load rating and basic dynamic load rating, limiting speed. Selection			
of ball bearings using manufacturer's catalogue.			
5 ERGONOMICS & AESTHETIC OF DESIGN			
5.1 Ergonomics of design- Man-Machine relationship. Design of	05	05	CO1
Equipment for control, environment & safety.			CO3
5.2 Aesthetic considerations regarding shape, Size, color & surface			
finish.			
Total	75	64	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to Design	08	10
2	Design of simple machine parts	10	12
3	Design of Shafts, keys and Couplings, Power Screws, Springs and fasteners	36	42
4	Antifriction bearings	05	06
5	Ergonomics & Aesthetic of design	05	05
	Total	64	75

Directorate of Technical Education, Goa State 8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practicals	Marks					
1.	Assignment on selection of materials for given applications [at least five applications should be covered] using design data book. List the						
	mechanical properties of material selected. 2 Hrs	5					
2.	Design of Socket & Spigot Cotter Joint. Prepare design report and assembly drawing indicating overall dimensions, tolerances, and surface finish. Also prepare bill of materials 8 Hrs	06					

Directorate of Technical Education, Goa State

3.	Design Project: Observe the system where transmission of power takes	06						
	place through shaft, Keys, coupling, pulley and belt drive. Get the required							
	information regarding power transmitted (power output by motoror engine							
	etc.). By selecting suitable materials, design the shaft, key and coupling.							
	Also select suitable Ball Bearing from Manufacture's catalogue.(Activity							
	should be completed in a group of five to six students) 8 Hrs							
4.	Design a power screw. Prepare design report and CAD assembly drawing	06						
	indicating overall dimensions, tolerances, and surface finish. Also prepare							
	bill of materials. Printout of CAD assembly drawing should be attached							
	along with the report. 8 Hrs							
5.	Assignments on design of Helical Springs, Bolted joints, Welded joints	04						
	[one each] with free hand sketches. (numerical problems) 6 Hrs							
	Total	25						

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	R.S.Khurmi, J.K.Gupta	A Textbook of Machine Design	S. Chand ,2014
2	V.B.Bhandari	Introduction to Machine Design	Tata Mc. Graw Hill,2002
3	R.K.Jain	Machine Design	Khanna Publications, 1998
4	Pandya & Shah	Machine Design	Dhanpat Rai & Sons, 1992
5	PSG Coimbatore	Design Data Book	PSG Coimbatore ,2000

ELECTIVES-I

(MC604) COMPUTER AIDED DESIGN AND MANUFACTURING

1. COURSE OBJECTIVES:

The market driven economy demands frequent changes in product design to suit the customer needs. With the introduction of computers, the task of incorporating frequent changes as desired is becoming simpler. Similarly, the concept of manufacturing has undergone significant revolutionary change. Main change lies in the replacement of conventional Machines and Equipments with Computerized Numerically Controlled Machines and process of equipments. This has resulted in the enormous saving in the areas of manufacturing, it is essential that Diploma holders should be exposed to basic concepts of Computer Aided Design and Manufacturing using various CAD software & CNC machines programming.

2. TEACHING AND EXAMINATION SCHEME

Course Code	Periods/ Week (In Hours)		Total	Examination Scheme					
& Course Title			Hours	Theory Marks		Practical Marks		Total Marks	
MC604 COMPUTER AIDED	L	Т	Р	Н	ТН	TM	PR/ OR	TW	
DESIGN AND MANUFACTURING	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC304.CO1: Describe CAD/CAM, Robotics and Automation principles.

MC304.CO2: Apply the concepts of CAD/CAM in industry.

MC304.CO3: Develop Geometric model for machine component.

MC304.CO4: Prepare Part program for machine component.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	1	1	1	1	2	1	2	2
CO2	2	2	3	2	2	3	2	2	2
CO3	1	3	3	3	1	2	1	3	1
CO4	2	3	3	3	2	3	1	2	3

Relationship: Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes]	
Unit	Μ	Thr	CO
1 INTRODUCTION TO CAD/CAM			
1.1 Computers in industrial manufacturing. Product Cycle,	10	05	CO1
1.2 CAD/CAM hardware: - basic structure, CPU, Memory, I/O devices,	_		
1.3 Storage devices and system configuration.			
1.4 Introduction to Group Technology and its need.			
1.5 Need of graphic standards.			
2 GEOMETRIC MODELLING			
2.1 Requirement of geometric modelling,	15	12	CO1
2.2 Types of geometric models.			CO2
2.3 Solid modelling- Primitives & Boolean operations,			CO3
Types of Solid modelling Techniques: Constructive solid geometry			
(CSG) method, sweep methods.			
2.4 Transformations: Types of transformation, Numericals of 2 nd and 3 rd			
order only.			
2.5 Classification of surface, free form surfaces, (No numerical			
treatment)			
3 INTRODUCTION TO COMPUTER NUMERICAL CONTROL	15	10	CO1
3.1 Introduction - NC, CNC, DNC,			CO2
3.2 Advantages of CNC, The coordinate system in CNC,			
3.3 Motion control system - point to point, straight line, Continuous path			
4 PART PROGRAMMING			
4.1 Fundamentals, manual part programming, NC –Words,	15	09	CO1
4.2 Programming format, part programming			CO2
4.3 Use of subroutines and do loops,			CO3
4.4 Simple programs on Turning and Milling operations.			CO4
5 ROBOTICS & AUTOMATION			
5.1 Introduction, physical configuration, basic robot motions,			
5.2 Technical features such as - work volume, precision and speed of	20	12	CO1
movement, Load carrying capacity, range, repeatability & accuracy			CO2
5.3 Introduction to robot applications – Material transfer, machine			
loading, welding, spray coating, processing operation, assembly,			
inspection.			
5.4 Basic elements of automated system, Levels of automation			
5.5. Introduction to Flexible manufacturing cell (FMC), Flexible			
manufacturing system (FMS), Automated guided vehicles (AGV's),			
Automated retrieval and storage systems (AR/AS), FMS application,			
5.6 Introduction to Computer Integrated Manufacturing System (CIMS),			
Role of CIMS in modern industry, Schematic diagram of CIMS			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, and exercises.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Торіс	Teaching	Total
No.		Hours/	Marks
		Semester	
1.	Introduction to CAD/CAM	05	10
2.	Geometric Modelling	12	15
3.	Introduction to computer numerical Control	10	15
4.	Part Programming	09	15
5.	Robotics & Automation	12	20
		48	75
	Total		

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Any 4 from 1,2,5,6,7 & any one from 3 &4)
1	Assignment on CAD for 3D drafting using CAD software
2.	Write a part program using subroutines do loops for turning and milling components
3	Manufacturing a component on CNC Lathe.
4.	Manufacturing a component on CNC Machining centre.
5.	Report writing on visit to industry having CAD CAM facility.
6.	Report writing on visit to industry having robot Application.
7.	Report writing on visit to Industry having Automation in manufacturing

9. LEARNING RESOURCES

S. No.	Author	Title of Books	Publication & Year
1.	P.N.Rao	CAD/CAM Principles and Applications	Tata McGraw-Hill
2.	RadhaKrishna P. & Subramanyam	CAD/CAM/CIM	Wiley Eastern Ltd
3.	B.S.Pabla and M.Adithan	CNC	Machine New age International(P)Ltd
4.	Groover M.P. & Zimmers Jr	Computer Aided design and manufacturing	Prentice hall of India
5.	Lalit narayan,M. Rao	Computer Aided design and manufacturing	PHI

(MC612) PLC IN AUTOMATION

1. COURSE OBJECTIVES:

The subject is classified under automation technology group. The advancement of both knowledge and technique has resulted in the development of PLC's in process industry. Programmable Logic controller works as a brain of automation system, which can be programmed for desired functions for controlling different machines. Therefore, there is demand for persons having automation knowledge with skill of PLC Programming.

2. TEACHING AND EXAMINATION SCHEME

Periods/Week		Total	Examination Scheme				
(in hour	s)	Hours	TheoryPracticalMarksMarks			Total Marks	
L T	Р	Н	TH	TM	TW	PR/OR	
3 -	2	5	75	25	25	25	150
	(in hour	(in hours)	(in hours) Hours L T P H	(in hours) Hours Theo Mar L T P H TH	(in hours)HoursTheory MarksLTPHTHTHTHTHTM	(in hours)HoursTheory MarksPra MarksLTPHTHTM	(in hours)HoursTheory MarksPractical MarksLTPHTHTMPR/OR

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC612.CO1: Describe the various components of PLC.

MC612.CO2: Select different types of input and output for PLC.

MC612.CO3: Develop Ladder Logic Program for a given application.

MC612.CO4: Demonstrate installation and troubleshooting of PLC.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	1	1	1	1	2	2	1
CO2	3	3	1	1	1	1	2	2	3
CO3	3	3	3	3	1	2	2	3	3
CO4	3	3	3	3	2	3	2	3	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	Μ	Thr	CO
1 AUTOMATION			
1.1 Introduction			
Need of automation, Advantages of automation, Requirements of	09	04	CO1
automation.			
1.2 Application areas			
Process industries, Buildings, Robotics, Infrastructure, Aerospace,			
railways, Automobiles, Telecom, Electrical distribution, Medical.			
2 PLC FUNDAMENTALS			
2.1 Introduction			
Evolution of PLC in automation, Difference between Relay control and			
PLC Control, Advantages, Disadvantages, PLC Vs PC.			
Different PLC's available in market (Rating, Memory, cost, programming	15	10	CO1
language, performance)	15	12	CO1 CO2
2.2 Block diagram and description of different parts:			02
CPU – Function, scanning cycle, speed of execution			
Power Supply- Function			
Memory- Function and Organisation of ROM and RAM	4		
2.3 Input and Output Modules			
Input Modules – Function, different input devices used with PLC (Only name and their Uses)			
Output Modules- Function, different output devices used with PLC (Only name and their Uses)			
,			
Fixed and Modular PLCs and their types.			
Concept of Sink/Source, set/ reset, latch/unlatch 3 PLC PROGRAMMING			
3.1 Introduction	-		
	21	13	CO1
Ladder Diagrams, Flowcharting as a Programming method.			CO2
3.2 Basic Logic Circuits			CO3
Ladder diagram for basic logic circuits, (AND, OR, NAND, NOR, XOR)			
3.3 Basic PLC Functions			
PLC Timer Functions, PLC Counter Functions, Register Basics			
3.4 Intermediate Functions	1		
Arithmetic Functions, number comparison and number conversion			
functions			
3.5 Data Handling Functions	1		
PLC SKIP, MASTER CONTROL RELAY Functions, JUMP, PLC MOVE			
Function, PLC FIFO Function.			
Simple Programming examples using ladder programming language based			
on logical, comparison, timer, counter, data handling and miscellaneous			
instruction.			
Unit 4 PLC APPLICATIONS			
4.1 Ladder Programming PLC Applications	21	12	CO1
Block Diagram and Simple Ladder programming for following applications:			CO2
i) Control of Pneumatic Cylinder: Logical control with and without Latching,			CO3
Sequential control			
ii) Elevator Control			

Directorate of Technical Education, Goa State

M = Marks Thr = Teaching hours CO = Course Outcomes	1	1	
Unit	Μ	Thr	CO
iii) Conveyor Control			
iv) Bottle Filling Control			
v) Stepper motor control			
Unit 5 PLC INSTALLATION AND TROUBLE SHOOTING			
5.1 PLC Installation	09	07	CO1
PLC Installation: Enclosures, racks, master control relay, grounding, noise			CO2
suppression, maintenance guidelines.			CO3
5.2 PLC troubleshooting			CO4
PLC troubleshooting - input and output troubleshooting using module			
LED status, troubleshooting of ladder program.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Automation	04	09
2	PLC Fundamentals	12	15
3	PLC Programming	13	21
4	PLC Applications	12	21
5	PLC Installation and trouble shooting	07	09
	Tot	al 48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (1 TO 5,10,11 compulsory and Any two from 6 to 9)	Marks
1.	Write a Ladder program to verify functions of logic gates by using PLC.	
2.	Write a Ladder Program for start stop using two inputs.	
3	Write a Ladder Program using Output Interlocks	
4	Write a Ladder Program for Traffic control using timer functions.	
5	Write a Ladder Program for pulse counting using Limit switch/proximity sensor.	
6	Write a Ladder Program for PLC based application using Conveyor system.	
7	Write a Ladder Program for PLC based application using Elevator system.	25
8	Write a Ladder Program for PLC based application for bottle filling	
9	Write a Ladder program for sequencing of cylinders	
10	Install PLC with input output devices.	
11	Troubleshoot a given PLC configuration.	
	Total	

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	John W. Webb & Ronald Reis	Programmable Logic Controllers	Prentice Hall of India
2	NIIT	Programmable Logic Control – Principles and Applications	Prentice Hall India
3	Madhuchand A. Mitra & Samarjit Sen Gupta	Programmable Logic Controllers and Industrial automation	Penram International Publishing

9.2Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Petruzella	Programmable Logic Controller	McGgraw Hill
2	Gary Dunning	Introduction to Programmable Logic Control	Cengage Learning
3	V.R Jadhav	Programmable Logic Controllers	Khanna Publishers
4	W. Bolton	Programmable Logic Controllers	Elsvier India;

9.3 Internet and Web Resources

Websites:

www.plctutor.com

www.plcs.net

www.abb.co.in

Students may download the catalogue of PLC from websites of reputed manufacturers such as SIEMENS, FATEK, DELTA, OMRON and ALLEN-BRADLLEY to learn the latest developments.

1. COURSE OBJECTIVE:

The course is introduced with an objective of providing the knowledge of Fibre reinforced polymers (FRP) and its used in advanced engineering structure. The course is structured to provide adequate technical knowledge about FRP that includes types of matrix resins and reinforcements, various processing and post processing methods, various kinds of inspection tests on raw materials and finished products, repair techniques, handling and safety in FRP manufacture.

2. TEACHING AND EXAMINATION SCHEME

SemesterVCourse code &	Dom	oda/W	Vool	Total		Fyon	ninatio	n Schomo	
course title	Periods/Week (in hours)		Hours			nination Scheme Practical Marks		Total Marks	
(MC615)	L	Т	Р	Н	TH	TM	TW	PR/OR	
FIBER REINFORCED POLYMERS	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to: MC615.CO1:

Describe processes for manufacturing FRP components. MC615.CO2: Select

different types of resins and fibres

MC615.CO3: Manufacture FRP components.

MC615.CO4: Maintain FRP Components.

4. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	1	1	2	1	1	1	1
CO2	3	2	2	2	2	2	2	1	2
CO3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	2	2	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN	7		
M = Marks Thr = Teaching hours CO = Course Objectives			
	Μ	Thr	CO
1. INTRODUCTION TO COMPOSITES		o -	0.01
1.1 Definition of composites	09	05	CO1
1.2 Constituent phases			CO2
1.3 Classification of composites			
1.4 Types of matrices and reinforcements			
1.5 General characteristics of fibre reinforced composites			
1.6 Fiber reinforced polymer composites			
1.7 Main features, benefits and drawbacks of composites			
1.8 Applications of FRP in various industries.			
2. FIBRES REINFORCEMENTS AND ORGANIC MATRICES			
2.1 Types of fibres and their development			
2.1.1 Organic fibres			
2.1.2 Glass fibres	18	12	CO1
2.1.3 Boron fibres			CO2
2.1.4 Silicon fibres			
2.1.5 Carbon fibres			
2.1.6 Sic based fibres			
2.1.7 Continuous mono-crystalline filaments			
2.1.8 Whiskers			
2.1.9 Kevlar fibres.			
2.1.10 Introduction to Nano fibres			
2.2 Fibres surface treatments for glass fibres, carbon fibres, Kevlar fibres.			
2.3 Introduction to Organic matrices			
2.4 Resin structure			
2.5 Characteristics and applications of Thermosetting matrix systems			
2.5.1 Unsaturated polyester resins			
2.5.2 Vinyl ester resins			
2.5.3 Epoxy resins			
2.5.4 Phenolic resins			
2.6 Characteristics and applications of Thermoplastic matrix materials.			
2.7 Fillers and other additives, pigments & release agents.			
2.8 Accelerators, Promoters and catalysts.			
3. COMPOSITE MANUFACTURING PROCESSES			
3.1 Introduction			
3.2 Reinforcement shapes	15	10	CO1
3.2 Introduction to mould making		_	CO2
3.3 Resin matrix processes and associated tools, equipments and	-		CO3
consumables			
3.3.1 Contact moulding			
3.3.2 Spray up moulding			
3.3.3 Autoclaving			
3.3.4 Resin transfer moulding			
3.3.5 Vacuum assisted resin injection/transfer moulding			
3.3.6 Injection moulding			
3.3.7 Rotational moulding			
3.3.8 Centrifugal casting			
3.3.9 Filament winding			
3.3.10 Pultrusion			
3.3.11 Compression moulding			

Directorate of Technical Education, Goa S	-tute	1	I
3.3.12 Sandwich construction			
3.4 Pre pegs and sheet moulding compounds(SMC)			
4. POST PROCESSING METHODS, INSPECTION AND QUALITY			
CONTROL	. !		
4.1 Introduction	1.5	00	001
4.2 Various post processing methods	15	09	CO1
4.2.1 Cutting			CO2
4.2.2 Trimming			CO3 CO4
4.2.3 Machining			C04
4.2.4 Joining			
4.2.4.1Mechanicalfastening			
4.2.4.2Adhesivebonding			
4.2.4.3 Lamination			
4.2.4.4 Painting and coating			
4.3 Raw material inspection tests			
4.3.1 Resin gel time			
4.3.2 Resin viscosity			
4.3.3 Resin peak exotherm temperature4.3.4 Resin and hardener refractive index test			
4.4 Tests on finished composites			
4.4.1 Non-destructive tests			
4.4.1.1Visual			
4.4.1.2Taptest 4.4.1.3Ultrasonic methods			
4.4.1.4X-rayimaging 4.4.1.5Thermography			
4.4.1.6Barcol hardness test			
4.4.1.7Hydrostatictests			
4.4.2 Other destructive tests			
4.4.2.1 Pipe burst test.			
*			
4.4.2.2 Fire endurance test			
5. DESIGN CRITERIA, REPAIR AND MAINTENANCE,			
HANDLING, DISPOSAL AND SAFETY IN FRP MANUFACTURE	18	12	CO1
5.1 Design criteria in FRP product manufacture	10	12	CO1 CO2
5.2Factorsinfluencingdesign			CO2 CO3
5.3Selectionofrawmaterials			CO3 CO4
5.4Selectionofprocesses.			0.04
5.5 Repair and maintenance of FRP components			
5.5.1Tools and materials required.			
5.5.2 Identification of defects as per required standard.egISO14692			
5.5.3Repair procedure for superficial damage– external and internal			
5.5.4Major damage–Reject or repair as per manufacturer's			
recommendation.			
5.6 Handling, disposal and safety in FRP manufacture			
5.7.1Precautions in handling raw materials and finished products.			
5.8Disposal of wastes developed during manufacture of FRP			
5.9Safety precautions during FRP manufacture			
Total	75	48	
1014	15	- 1 0	-

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of	Marks
		lectures	
1	Introduction to composites	05	09
2	Fiber reinforcements and Organic matrices	12	18
3	Composite manufacturing processes	10	15
4	Post processing methods, Inspection and quality control	09	15
5	Design criteria, Repair and maintenance, Handling, disposal and safety in FRP manufacture	12	18
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (1,2,8,Any one from 3,4,5,Any one from 6 & 7) Note: Practicals 3 to 7 to be performed either in institute orindustry	Marks			
1.	Identification of tools used in FRP repair and in fabrication.				
2.	Identify different resins and reinforcement fibers used in FRP manufacture.				
3.	Fabricate a panel using hand layup technique.				
4.	Fabricate a panel using vacuum assisted resin injection.				
5.	Fabricate a component using bag moulding and autoclave.				
6.	Carry out a glass fiber skin repair job.				
7.	Carryout an edge repair to a glass fiber panel.				
8.	Explain the procedure for carrying out FRP repair.				
	Total	25			

9. LEARNING RESOURCES

9.1 Text Books

S. No	Author	Title of Books	Publishers
• 1			WoodheadPublishingLtdCambridge,Eng land
2	G Lubin	"Hand Bookof Composites",2ndEd	VanNostrandReinhold,NewYork,1982.
3	L.Holloway	HandBookofCompositesforEngin eers	Technomic,Lancaster,Pa,1994.
4	KrishanK.Chaw la	Compositematerials:Science andEngineering	

Directorate of Technical Education, Goa State 9.2 Internet and Web Resources

9.2 Inter	9.2 Internet and web Resources						
S. No.	Author						
1	www.google.com						
2	www.youtube.com						

(MC 621) REFRIGERATION AND AIR CONDITIONING

1. COURSE OBJECTIVE:

Refrigeration and air conditioning is a very important subject and finds application in a large number of areas that include human comfort, industrial air conditioning, medical and healthcare, defence and spacecraft, transportation, agriculture, metallurgy, cryogenics, etc. Mechanical engineering diploma holders play an important role in the component selection, operation, maintenance and performance evaluation of R & AC systems. Through this course students will be able to understand the processes, equipments and systems of Refrigeration and Air conditioning for attaining knowledge of component selection, operation and maintenance.

2. TEACHING AND EXAMINATION SCHEME

Semester	VI											
Course code	Course code &		Periods/Week			Examination Scheme						
course titl	e	(iı	n hou	rs)	Hours	Theory Practical		actical	Total			
						Ma	rks	Marks		Marks N		Marks
(MC621)		L	Т	P	H	TH	TM	TW	PR/OR			
REFRIGERA	TION	03	00	02	05	75	25	25	25	150		
& AIR												
CONDITION	ING											

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC 621.CO1: Describe working principles and construction of Refrigeration and Air Conditioning systems.

MC 621.CO2: Select various components and controls used in refrigeration and air conditioning.

MC 621.CO3: Use various charts and tables of refrigeration and air conditioning.

MC 621.CO4: Analyze performance of refrigeration and air conditioning systems.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	3	2	2	2	1
CO2	3	3	1	2	2	3	2	3	2
CO3	3	3	3	3	3	2	1	3	2
CO4	2	3	3	3	3	2	1	3	2

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	Μ	Thr	
1 BASICS OF REFRIGERATION			
1.1 Definition of refrigeration			
1.2 Necessity of refrigeration	09	06	CO1
1.3 Methods of refrigeration			
1.3.1 Vapour compression refrigeration			
1.3.2 Vapour absorption refrigeration			
1.4 Unit of refrigeration, refrigerating effect, coefficient of performance			
1.5 Major applications of refrigeration for domestic, commercial and			
industrial use			
2. REFRIGERATION SYSTEMS & REFRIGERANTS			
2.1 Vapour compression cycle: Principle, components & working.			
2.1.1 Representation on p-h and T-s diagrams of wet compression, dry	20	14	CO1
compression, calculation of C.O.P. (for simple saturated cycles)			CO2
2.1.2 Effect of superheating and undercooling			CO3
2.1.3 Effect of suction pressure and discharge pressure.			CO4
2.1.4 Methods of improving COP of system			
2.1.5. Introduction to cascade refrigeration systems and its applications.			
2.2 Vapour absorption refrigeration, properties of ideal absorbent			
2.2.1 Principle, components and working of aqua-ammonia system (simple			
and practical)			
2.2.2 Comparison of vapour absorption system with vapour compression			
system			
2.2.3 Advantages of vapour absorption refrigeration system over vapour			
compression refrigeration system			
2.3 Refrigerants			
2.3.1 Classification of refrigerants, Classification based on toxicity and			
flammability.			
2.3.2 Desirable properties of an ideal refrigerant			
2.3.3Nomenclature of refrigerants (limited to CFC, HCFC, HFC and			
Inorganic) 2.3.4 Ozone depletion potential (ODP), Global warming potential (GWP),			
Acceptable exposure limit (AEL), Eco friendly refrigerants			
2.3.5 Important properties of commonly used refrigerants: Ammonia, R-			
22, R-32, R134-a, R290, R404a, R502, R600, R1234yf			
$22, R^{-3}2, R^{13}+a, R^{2}, R^{10}+a, R^{5}, R^{10}, R^{10}, R^{12}, R^{10}$			
3 REFRIGERATION SYSTEM COMPONENTS			
3.1 Components of vapour compression refrigeration system			
3.2 Classification of refrigerant compressors	16	10	CO1
3.3 Construction, working and applications of following:			CO2
(a) hermetic compressor			
(b) reciprocating open type compressor			
(c) screw compressor			
(d) centrifugal compressor			
(e) Rotary compressor			
3.4 Classification of condensers			

Directorate of Technical Education, Goa S	stat	e	
3.4.1 Description of air cooled, water cooled and evaporative condensers			
3.4.2 Comparison of air cooled and water-cooled condensers			
3.5 Different types of expansion devices, Construction, working and			
applications of following:			
(a) capillary tube			
(b) thermostatic expansion valve			
(c) high side float valve			
(d) low side float valve			
3.6 Classification of evaporators, Construction, working and applications			
of following:			
(a) Bare tube evaporator.			
(b) finned tube evaporator			
(c) shell and tube evaporator			
(d) flooded evaporators			
(e) dry expansion evaporator			
4. PSYCHROMETRIC PROCESSES, HUMAN COMFORT &			
COOLING LOAD ESTIMATION			
4.1 Definition and necessity of air conditioning			
4.2 Properties of air, Dalton's law of partial pressures	15	09	CO1
4.3 Psychometric chart			CO2
4.4 Psychometric processes, Bypass factor, Apparatus dew point, concept			CO3
of sensible heat factor			CO4
4.5 Adiabatic mixing of air streams			
4.6 Simple numerical using Psychometric chart			
4.7 Comfort conditions			
4.7.1 Thermal exchange of body with environment			
4.7.2 Factors affecting human comfort			
4.7.3 Effective temperature and comfort chart			
4.8 Components of cooling load- sensible heat gain and latent heat gain			
sources.			
5. AIR CONDITIONING SYSTEMS & AIR DISTRIBUTION (No			
Numericals)			
5.1 Classification of A.C. systems	15	09	CO1
5.2 Industrial and commercial A.C. systems	10	07	CO2
5.3 Summer, winter and year-round A.C systems			CO3
5.4 Central and unitary A.C. systems			000
5.4.1 Air conditioning equipment: Air handling unit, air washer,			
humidifier, dehumidifier, filter, heating and cooling coils			
5.4.2 Construction, working and applications of different types of fans and			
blowers			
5.5 Applications of A.C systems			
5.6 Air distribution systems			
5.6.1 Requirements of good room air distribution.			
5.6.2 Definitions of Draft, Throw, Drop, Spread, Entrainment ratio.			
5.6.3 Duct systems: Perimeter loop system, extended plenum system, radial			
duct system, reducing plenum system.			
5.6.4 Duct material, requirement of duct material, losses in ducts.			
5.6.5 Air distribution outlets			
5.6.5.1 Types of supply air outlets: Grille, slot diffuser, Ceiling diffuser.			
Perforated panel.			
5.6.5.2 Factors to be considered in selecting supply air outlets			
1 3.0.3.2 1 actors to be considered in selecting suppry an outlets			1

Total	75	48	
1000		••	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Basics of Refrigeration	06	09
2	Refrigeration Systems and Refrigerants	14	20
3	Refrigeration System Components	10	16
4	Psychometric Processes, Human Comfort and Cooling Load Estimation	09	15
5	Air Conditioning Systems and Air Distribution	09	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (5,6,10,11 compulsory and Any 04 from remaining practicals to be conducted)	Marks		
1.	Demonstration of domestic refrigerator in view of construction, operation and controls used			
2.	Demonstration of window / split air conditioner in view of construction, operation and controls used			
3.	Demonstration of various controls on refrigeration systems that include LP/HP cut outs, thermostat, overload protector, solenoid valve			
4.	Identification of components of hermetically sealed compressor.			
5.	Trial on refrigeration test rig.			
6.	Trial on A.C. test rig			
7.	Visit to repairs and maintenance workshop or video presentation to get demonstration of various tools and charging procedure			
8.	Visit to an ice plant/ cold storage plant			
9.	Visit to central A.C. plant in view of ducting system, insulation system and air distribution system.			
10.	Troubleshooting of domestic refrigerator/ window a c / split a c			
11.	Selection criteria for vapour compression refrigeration system components for the following applications: Water cooler, Ice plant, cold storage, domestic refrigerator			
	Total	4		

9. LEARNING RESOURCES

9.1Text Books

S.No.	Title of Book	Author	Publisher
1	A Textbook of Refrigeration and Air Conditioning	R.S. Khurmi, J.K. Gupta	S. Chand & Company, New Delhi
2	Refrigeration and Air Conditioning	R. K. Rajput	S.K.Kataria & Sons, New Delhi
3	A textbook of Refrigeration & Air Conditioning (For Polytechnic Students)	R. K. Rajput	S.K.Kataria & Sons, New Delhi
4	Basic refrigeration and air conditioning	Ananthanarayanan	Tata McGraw Hill
5	A Course in Refrigeration & Air Conditioning	Arora, S. Domkundwar	Dhanpat Rai & Sons, New Delhi
6	Elements of Heat Engines Vol III	R.C. Patel, C.J. Karamchandani	Acharya Book Depot, Vadodara
ELECTIVES II & III (MC614) ADVANCED MANUFACTURING

1. COURSE OBJECTIVES:

This course is designed to acquaint and motivate the student with the nature of manufacturing processes, to know about the advancements in the area of manufacturing and production processes, to get familiarized with working principles and develop a skill to perform operations on nontraditional machines, machining center, SPM, automated machines.

2. TEACHING AND EXAMINATION SCHEME

Semester VI Course code & Periods/Week				Total	Examination Scheme				
course title	(in	hou	rs)	Hours	Theory Marks		•		Total Marks
MC614 ADVANCED	L	Т	P	H	TH	TM	TW	PR/OR	-
MANUFACTURING	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC614.CO1: Explain the fundamentals of advanced manufacturing processes

MC614.CO2: Develop process plan for machining a complex component.

MC614.CO3: Select the machines and toolings for manufacturing intricate components.

MC614.CO4: Demonstrate the operations on advanced machines.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	2	1	1	1	1	2
CO2	3	3	3	2	2	3	2	2	3
CO3	3	3	2	2	2	2	2	2	3
CO4	2	2	2	2	2	3	2	2	3

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	CO
1 ADVANCED CASTING PROCESSES			
Working principle, process description, advantages, limitations and applications of the following 1.1 Investment Casting	15	08	CO1 CO3
1.2 Ceramic Mould casting			
1.3 Full Mould casting			
1.4 Continuous Casting			
2 SPECIAL WELDING PROCESSES			
3.1 Working principle, process description, advantages, limitations and applications of the following welding processes3.1.1 Resistance welding	15	10	CO1 CO2
3.1.2SAW welding 3.1.3MIG welding 3.1.4TIG welding			CO3 CO4
3.2 Working principle, process description, advantages, limitations and applications of the following Modern welding processes:3.2.1 Electro beam welding3.2.2Laser welding			
3.3Underwater welding technique			
3 CNC MACHINES		10	G G G
2.1. Introduction	15	10	CO2
2.1.1 constructional features of CNC Machine			CO3
2.1.2 Designating Axes of CNC machine			CO4
2.1.3Automatic tool changer and tool magazine.	_		
2.2 Introduction to CNC program2.2.1 manual Part programming including subroutines and canned cycles.			
4 SPECIAL PURPOSE MACHINES & GEAR MANUFACTURING	18	12	CO1
PROCESSES			CO2
4.1 SPM	7		CO3
4.1.1 Need, principles, advantages, limitations and applications.			
4.2 GEAR MANUFACTURING PROCESSES			
4.2.1 Methods of gear cutting			
4.2.2 Indexing and Dividing Heads			
4.2.3 Different Methods of indexing			
4.2.4 working principle, advantages, limitations and applications of			
i) Gear Hobbing			
ii) Gear Shaving			
iii) Broaching			
5 NONCONVENTIONAL MACHINING PROCESSES	1		
5.1 Working principle, advantages, limitations and Applications of following	12	08	CO2
processes			CO3
i) Wire cut EDM,			
ii)Electrochemical Grinding,			
iii) Plasma Arc Cutting,			
iv) Abrasive water jet machining.			
5.2 Introduction to Additive manufacturing (3D Printing)			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Advance casting processes	08	15
2	Special welding processes	10	15
3	CNC machines	10	15
4	SPM & Gear manufacturing processes	12	18
5	Nontraditional machining processes	08	12
		48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (5,6 compulsory. any four from remaining)	Marks
1	Prepare a job using any one of the casting methods	
2	Job on Resistance welding/TIG/MIG welding	
3	Write a part program on machining center.	
4	Job on CNC machine.	25
5	Manufacture a Gear using Milling machine (Group of 5)	
6	Industrial visit to observe at least one Special Purpose Machines (SPM) or special welding process and report on visit	
7	Literature review on wire cut EDM	
8	Literature review on Plasma Arc Cutting	
	Total	25

09. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	D. K. Singh	Manufacturing Engineering	Ane Book pvt ltd 2011.
2	P. N. Rao	CAD/CAM Principals and Applications	Tata McGrow Hill
3	HMT Bangalore	Production Technology	Tata McGrow Hill
4	Hajra Choudhury	Workshop Technology volume II	MPP pvt ltd
5			New age international
	Pabla B. S.	CNC machines	limited.2011

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	S.S. Agarwal	Advanced Manufacturing Processes	Nirali Prakashan
2	Vaibhav Rangari	Advanced Manufacturing Processes	Tech-Max
3	Divya Zindani,	Advanced Machining and	Springer
		Manufacturing Processes	

1. COURSE OBJECTIVE:

Automobile engineering has vast scope in today's world and has grown tremendously in the last few decades. The technology involved in automobile is changing rapidly with the advent of electronic controls. Global concern for environment has given impetus to the development of hybrid and electric vehicles. This course is aimed at familiarizing the student with the basic concepts of automobile, its working principle and systems.

2. TEACHING AND EXAMINATION SCHEME

Semester									
Course code & Periods/Week				Total	Fotal Examination Schem				
course title	(in hours)		Hours	Theory		Practical		Total	
					Marks		Marks		Marks
(MC 622)	L	Т	P	H	TH	TM	TW	TW PR/OR	
AUTOMOBILE	3	-	2	5	75	25	25	25	150
ENGINEERING									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC 622.CO1: Describe the various types of automobiles.

MC 622.CO2: Demonstrate the working of different systems in an automobile.

MC 622.CO3: Troubleshoot different faults in an automobile.

MC 622.CO4: Use different tools & equipments in an automobile workshop.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	1	1	2	2	1
CO2	3	2	1	2	2	1	2	2	1
CO3	3	3	3	3	3	3	3	3	3
CO4	3	2	2	3	3	3	2	3	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
1 INTRODUCTION & CHASSIS CONSTRUCTION OF AN	Μ	Thr	СО
AUTOMOBILE			
1.1Classification of automobiles based on use, capacity, body style,			
Engine location.			
1.2 Layout of Automobile: 4-wheel drive Automobile, 2 -wheel drive			
Automobile- front & rear wheel drive.			
1.3 Types of chassis frames Conventional/Framed chassis	8	4	CO1
Functions of chassis frame			
1.4 Various loads on the frame			
1.5Frame construction, Frame sections, Sub-frames			
1.6 Frameless chassis/Monocoque/Unitary design			
2 FUEL SYSTEMS			
2.1 Petrol fuel systems			
1. Carbureted			
2. Electronic fuel injection (EFI),			
3. Throttle Body injection (TBI)			
4. Multi point fuel injection (MPFI)			
5. Gasoline direct injection (GDI)			CO 2
6. Comparison of MPFI v/s Carbureted fuel system	10	0	CO2
7. Comparison of Multi point fuel injection (MPFI) v/s	12	8	CO2
Throttle Body Injection (TBI),			CO3
8. Functions of various sensors and actuators,			
9. Engine management system,			
2.2 Diesel fuel systems			
1. Individual pump system			
2. Common Rail Diesel Injection (CRDI)			
3. Fuel injection timing for diesel engines.			
3 POWER TRANSMISSIONS, STEERING & SUSPENSION			
SYSTEM			CO2
3.1 Clutch: Necessity			
Construction and working of different types of clutches,			CO3
a) Single plate clutches–diaphragm & coil spring type.			
b) Multi-plate clutch, Comparison between Dry & wet			CO4
clutch			
3.1 Construction and working of a Fluid Flywheel			
3.2 Gear box: Necessity			
Construction and working of the following			
a. Sliding-mesh, constant mesh, synchromesh &			
Epicyclic gear boxes			
b. Torque convertor			
c. Automatic transmission			
d. Overdrive.	28	18	
e. Transfer case (4WD)			
3.3 Advances in power transmission			
a. Automated Manual Transmission (AMT)			
b. Continuous Variable Transmission (CVT)			
c. Dual clutch Shift Gear (DSG)			

3.4 Steering: Necessity			
a. Steering Mechanisms: Ackerman & Davis			
b. Steering linkage for vehicle with rigid axle &			CO2
independent suspension,			
c. Steering gearbox – Rack & Pinion, recirculating ball,			CO3
worm & worm wheel			
d. Steering geometry, Wheel alignment and wheel			CO4
balancing			
e. Power steering:			
i) Hydraulic (Integral type)			
ii) Electrical			
3.5 Suspension system: Necessity			
a. Different type of springs used in suspension:			
i) Leaf spring			
ii) Coil spring			
iii) Torsion bar			
iv) Pneumatic (Air)			
b. Construction and working of a shock absorber			
c. Types of suspension system			
1) Rigid Axle suspension system			
i) Leaf spring suspension			
ii)Coil spring suspension			
2) Independent suspension			
i)McPherson strut type,			
ii)Double Wishbone type,			
3) Pneumatic/air suspension system			
4 ELECTRICAL SYSTEM			CO2
4.1 Battery – construction, rating, charging and maintenance	12	7	CO3
4.2 Starting system- Bendix drive, solenoid shift with			CO4
over-running clutch drive			
4.3 Generating system-DC generator, need for cut-out,			
Alternator, Voltage regulator			
4.4 Lighting system, Sealed beam			
4.5 Air conditioning system: construction and working			
4.6 Circuits for: flashers, horn, and wind screen wiper.			
4.7 Trouble shooting of electrical system.			
			· · · · · · · · · · · · · · · · · · ·

 5 BRAKE SYSTEM, SAFETY EQUIPMENT & EMISSION CONTROLS a. Brake system: Necessity 1.Construction and working of following i) Mechanical Brake – Drum and Disc ii) Hydraulic brake system- Drum and Disc iii) Pneumatic/Air brake system, iv) Air assisted hydraulic brakes, v) Vacuum assisted hydraulic brakes. 2.Working of Anti-lock Braking System (ABS) b. Safety Equipment & Emission Controls 1. Auto safety devices & Equipments: seat belts, Air bags, collapsible steering 2. Automobile Emissions: a) Effect on environment b) Catalytic converter c) Pollution control measures: BS VI norms for petrol and diesel vehicles 	15	11	CO2 CO3 CO4
norms for petrol and diesel vehicles Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	INTRODUCTION & CHASSIS CONSTRUCTION OF AN AUTOMOBILE	4	8
2	FUEL SYSTEMS	8	12
3	POWER TRANSMISSIONS, STEERING & SUSPENSION SYSTEM	18	28
4	ELECTRICAL SYSTEM	7	12
5	BRAKE SYSTEM, SAFETY EQUIPMENT & EMISSION CONTROLS	11	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (any one from 1 and 4), (any one from 2 and 3), (any one	Marks
	from 5 and 6), and7,8,9 compulsory	
1.	Dismantling and assembly of petrol engine or diesel engine	
2.	Trouble shooting of clutch.	
3.	Trouble shooting of Brakes	
4.	Dismantling and assembly of gear box.	
5.	Trouble shooting of MPFI by creating any two faults.	
6.	Troubleshooting of electrical system	
7.	Tracing of the air conditioning circuits of an automobile and identifying	
	the different components and learning the charging procedure.	
8.	Replacement of tie rods or tie rod end of steering linkage.	
9.	Awareness on Motor Vehicles Act (expert talk / Video presentation)	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Kirpal Singh	Automobile Engineering-volume I& II	Standard Publishers Distributors
2	C.P.Nakra	Basic Automobile Engineering	Dhanpat Rai Publishing Company
3	R. K. Rajput	A textbook of Automobile Engineering	Laxmi Publications Ltd
4	Dr. A.K.Babu Er. Ajitpal Singh	Automobile Engineering	S. Chand Publications
5	Crouse and Anglin	Automotive Mechanics	TATA McGraw-Hill publishing company ltd.
6	Joseph Heitner	Automotive Mechanics	CBs publishers & distributers

9.2 Internet and Web Resources

S. No.	AuthorTitle of BooksPublishers				
1	https://lecturenotes.in/subject/174/automobile-engineering-ae				
2	http://www.vssut.ac.in/lecture-notes.php?url=mechanical-engineering				
3	https://www.svce.ac.in/departments/auto/subjects_auto.php				
4	https://www.youtube.co	<u>em</u>			

(MC629) JIG & FIXTURES DESIGN

1. COURSE OBJECTIVES:

Through this course the students will be able to understand the importance and applications of jigs and fixtures, appreciate the use of various types of locators, clamps and other tools, get knowledge about elementary design aspects and recognize different types of jigs & fixtures as per the need of manufacturing process.

2. TEACHING AND EXAMINATION SCHEME

Semester						Exan	ninatior	n Scheme	
Course code & course title		iods/W n hours		Total Hours		eory Irks	-	actical arks	Total Marks
MC629 JIG &	L	Т	Р	Н	ТН	TM	TW	PR/OR	
FIXTURES DESIGN	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC629.CO1: Explain industrial significance of jigs and fixtures.

MC629.CO2: Select suitable locators, clamps, indexing devices and tool setting elements.

MC629.CO3: Design a jig for a given component.

MC629.CO4: Design a fixture for a given component.

4. Mapping Course Outcomes with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02
CO1	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	1	2	2	2	2
CO3	3	3	3	3	2	3	2	3	2
CO4	3	3	3	3	2	3	2	3	2

Relationship : Low - 1 Medium - 2 High - 3

5. DETAILED COURSE CONTENTS/MICRO-LESSON PLAN

M= Marks Thr = Teaching hours			
Unit	М	Thr	CO
1. INTRODUCTION			
1.1 Significance & purpose of jigs & fixtures, Definition, Advantages.	07	05	CO1
1.2 Economic consideration			
1.3 Elements of jigs fixtures: Locating elements, clamping elements, Tool			
guiding & Setting elements.			
1.4 General design principles			

 2. LOCATION & LOCATING DEVICES 2.1 Location: Six degrees of freedom, Duty of location system, Choice of location system, Redundant location, Six-point location principle. 2.2 Locating methods: From a plane surface, From a profile, From cylindrical surface. 2.3 Typical locators & their applications: support/rest pads or pins, Fixed and Adjustable. 2.4 Locators from a profile: Pins, location nests. 2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin. 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 5.1 Drill jig design – Types of jigs: Plate jigs & channel jigs, Angle plate jigs,	11	07	CO1 CO2
 location system, Redundant location, Six-point location principle. 2.2 Locating methods: From a plane surface, From a profile, From cylindrical surface. 2.3 Typical locators & their applications: support/rest pads or pins, Fixed and Adjustable. 2.4 Locators from a profile: Pins, location nests. 2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin. 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, pivoted two way clamps, pivoted strap clamps, pivoted edge clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			CO2
 2.2 Locating methods: From a plane surface, From a profile, From cylindrical surface. 2.3 Typical locators & their applications: support/rest pads or pins, Fixed and Adjustable. 2.4 Locators from a profile: Pins, location nests. 2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin. 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 surface. 2.3 Typical locators & their applications: support/rest pads or pins, Fixed and Adjustable. 2.4 Locators from a profile: Pins, location nests. 2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin. 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 2.3 Typical locators & their applications: support/rest pads or pins, Fixed and Adjustable. 2.4 Locators from a profile: Pins, location nests. 2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin. 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
Adjustable. 2.4 Locators from a profile: Pins, location nests. 2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin. 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3. CLAMPING 3. 1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3. 2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3. 3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES			
 2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin. 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin. 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 2.6 Vee locators: Fixed and Sliding 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 3. CLAMPING 3.1 Principles of clamping: position, strength, productivity, operator fatigue, and work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 work piece variation 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps, Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 	15	08	CO1
 Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps, Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 	15	08	CO1 CO2
Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES			02
 clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C' washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 clamps. 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4.1 NDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 4. INDEXING DEVICES AND DRILL JIG BUSHES 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 4.1 Linear indexing; Rotary Indexing 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 4.2 Indexing plate; Rotary Indexing Tables 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 4.3 Material & heat treatment for drill jig bushes 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 			
 4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES 	18	10	CO1
bushes; Renewable bushes; Liner bushes; Threaded bushes; Special bushes 5. DESIGN OF JIGS & FIXTURES			CO2
bushes 5. DESIGN OF JIGS & FIXTURES			
5. DESIGN OF JIGS & FIXTURES			
5.1 Drill jig design – Types of jigs: Plate jigs & channel jigs, Angle plate jigs,			
	24	18	CO1
Post jig & Pot jig; Turn over jig; Leaf or latch jig; Box jig; Design procedure			CO2
5.2 Provisions for swarf removal			CO3
5.3: Design of Milling fixture			CO4
5.4 Use of tenons; use of cutter setting block			
Total		48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction	5	07
2	Location & Locating Device	7	11
3	Clamping	8	15
4	Indexing Devices and Drill Jig Buses	10	18
5	Design of jigs & fixtures	18	24
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS

No.	Practical	Marks
1	Basic Principles	2

2	Illustration of basic elements of Jigs & Fixtures	3	
3	Locating Devices	3	9.
4	Clamps	3	LE
5	Indexing Devices	2	AR
6	Drill Jig bushes	2	NI
7	Design of simple drill- jig, for a given component (Assembly & Details) (Designed Jig may be redrawn using CAD software.	5	NG RE
8	Design of simple milling fixture, for a given component (Assembly & Details) (Designed fixture may be redrawn using CAD software.	5	SOUR
-	Total	25	CE
	· · ·		S

9.1 Text Books

Sr. No.	Author	Title of Books Publisher			
1	PH Joshi	Jigs & Fixtures	Tata McGraw Hill		
2	M.H.A. Kempster	Introduction to Jig and Tool Design	TheEnglishLanguageBookSociety, London		
3	ASTME	Fundamental of tool design	Prentice Hall		
4	Donaldson & Gold	Tool Design	Tata McGraw Hill		

9.2. Reference books for further study

Sr. No.	Author	Title of Books	Publishers	
1	Central machine Tool Institute,	Machine Tool Design	Tata McGraw Hill	
	Bangalore	handbook		
2	Edward G. Hoffman	Jig and Fixture Design	Cengage	

(MC631) LEAN MANUFACTURING

1. COURSE OBJECTIVE:

This course will enable the student to understand the basics of Lean Manufacturing and its different tools used in Industries. Its set of principles and processes leads to identifying and eliminating different wastes in the system. Lean Manufacturing helps in streamlining operations or manufacturing with Customer TAKT time, identifying the bottle neck areas and eliminates the same, which in turn will lead to Reduced Cycle Times.

2. TEACHING AND EXAMINATION SCHEME

Course Code &	Periods/Week			Total		Exam	ination S	cheme	
Course Title	in Hours		Hours	Theory Marks		Theory Marks Prac		Total	
						Marks		Marks	
(MC631) LEAN	L	Т	Р	Н	TH	TM	OR	TW	150
MANUFACTURING	3	-	2	5	75	25	25	25	130

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC631.CO1: Identify value added and non-value-added activities in a workplace

MC631.CO2: Apply 5S concept to maintain a workplace. MC631.CO3:

Use Lean tools to make improvements in the system MC631.CO4: Select

Standard Work/ Best Method.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	2	1	2	2	2	1	3
CO2	3	2	2	3	3	2	2	2	2
CO3	3	2	3	3	3	3	2	2	2
CO4	3	3	3	3	3	3	2	2	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours	CO = Course O	outcomes		
Unit		Μ	Thr	СО
1 INTRODUCTION TO LEAN				
MANUFACTURING				
1.1 History of lean manufacturing.		22	13	CO1

Directorate of Technical E	Jucation	, uua sia	le	
1.2 Lean – Meaning & Definition, Objectives of Lean			CO2	
Manufacturing system			CO3	
1.3 Lean Manufacturing V/s Traditional			CO4	
Manufacturing				
1.4 Value added Activity, Non-Value-added activity				
1.5 Internal Customer and External Customer				
1.6 Concepts of Waste, Eight Types of Wastes				
1.7 Pull System and Push system, Difference between				
Pull and Push system,				
1.8 Introduction to Lean Six sigma, Lean v/s Six				
Sigma				
2 5S ORGANIZATION SYSTEM				
2 55 ORGANIZATION 5151EM				
2.1 "5S" Terminology	9	5	CO1	
2.2 The Concept of 5-S with Examples		5	CO1 CO2	
2.3 Importance of 5S in Industry / Office,			CO2 CO4	
2.4 5S Visuals control.			04	
2.5 5S Audit				
3 ESSENTIAL LEAN TOOLS				
SESSENTIAL LEAN TOOLS				
3.1 Standardized Work				
3.2 KAIZEN	22	15	CO1	
3.3 One-piece Flow or Continuous flow		15	CO1 CO2	
3.4 Pull system and Kanban, Heijunka /Leveling			CO2 CO3	
3.5 Visual Control / Management			CO4	
3.6 TAKT Time, Cycle Time, SMED/OTS (Single			04	
Minute Exchange of Dies/One Touch Setup)				
3.7 Jidoka,/Mistake proofing / Poka Yoke				
3.8 Introduction to Total Productive Maintenance				
4 JUST IN TIME				
4.1 Introduction	12	8	CO1	
	12	0	CO3	
4.2 Elements of JIT: Small lot Sizes, set up Time, Pull			CO3	
production system, Cellular layouts, Standardization of			04	
components and work methods, Supplier network, Flexible Resources, Continuous Improvement				
4.3 Just in Time Manufacturing				
4.4 Benefits of JIT				
5 VALUE STREAM MAPPING	10			
5.1 Concept of VSM	10	8	CO1	
			CO2	
5.2 VSM Methodology, symbol used			CO3	
5.3 Current and Future State Map			CO4	
5.4 Examples of VSM				
Total	75	48		
10tal				

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit		Marks
No		lectures	
1	Introduction to Lean manufacturing	13	22
2	5S Organisation System	05	9
3	Essential Lean Tools	14	22
4	Just in Time	08	12
5	Value Stream Mapping	08	10
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS (ANY FIVE)

No	Practical	Marks
1.	Identifying Wastes in an Industry where you had undergone training and suggest ways to improve.	
2	Set up Institute's Workshop / Office / Lab or any other workplace to 5S Standard & prepare a detailed report	
3	Case study on application of 5S in Industry.	-
4	Pull System demonstration	-
5	Prepare a report on implementation of Kaizen at workplace.	
6	Industry Visit to check best practices and make a Report.	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Jeffrey K. Liker	The Toyota way	McGraw
			Hill
			Professional
2	James P. Womack, Daniel T.	The Machine That changed the world	Free Press,
	Jones, Daniel Roos		New York
3	Gopalkrishnan N.	Simplified Lean Manufacture:	PHI
		Elements, Rules, Tools and	
		Implementation	
4	Eric Ries	The Lean Startup	Penguin
5	Christopher Jahns, Nicolas	Lean Production	DGM Icfai
	Reinecke, Roger Moser		Books

Directorate of Technical Education, Goa State 9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	James P. Womack and Daniel T. Jones	Lean thinking	Lean enterprise Institute Cambridge
2	Mike Rother & John shook	Learning to See	Lean enterprise Institute Cambridge

Directorate of Technical Education, Goa State (MC 617) COMPUTER NUMERICAL CONTROL MACHINES

1. COURSE OBJECTIVE:

This course comes under core technology category. The intent is to teach students concepts, principle and advances in manufacturing system. The advanced manufacturing use latest technology for machining parts with complex design features for ease and minimal or no human interference. The parts/products manufactured meet quality standards and quick response to the customer demand.

The students will learn modern manufacturing machines, their operations, tooling's, peripheral support systems like AGV, ARS and robots used on the shop floor. Students will acquire knowledge and understand skill of operating advanced machines i.e. CNC machines. The students will be industry ready on completion of this course.

2. TEACHING AND EXAMINATION SCHEME

Semester										
Course code &		Peri	ods/V	Veek	Total		Exam	nination	Scheme	
course tit	le	(i	n hou	rs)	Hours	The Ma	•	-	actical Iarks	Total Marks
(MC 617) (CNC	L	Т	Р	н	ТН	ТМ	тw	PR/OR	
MACHINI	ES	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC 617. CO1: Describe the Numerical Control Technology in Machine tools.

MC 617. CO2: Write part program for given component.

MC 617.CO3: Select the tooling for CNC machines

MC 617.CO4: Apply manual and computer aided part programs on machines

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	2	1	1	1	1	1
CO2	3	3	3	3	2	2	2	1	3
CO3	3	3	3	3	2	3	2	2	3
CO4	3	3	3	3	3	3	2	2	3

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	Μ	Thr	CO
1 NC TECHNOLOGY			
1.1 Automation in manufacturing industry, Automation in machine Tools.	15	08	CO1
1.2 Fundamental of NC Technology, Suitability and limitations of NC	15	00	COI
Technology			
1.3 NC manufacturing, NC/CNC machines, DNC Systems.	-		
1.4 Need of CNC software, Advantages and Disadvantages of NC, CNC			
and DNC systems.			
2 NUMERICAL CONTROL M/C TOOLS			
2.1 Basics of CNC machine construction/hardware. Classification based			
on (i) Feedback control: Open loop and closed loop, (ii) Control system	15	10	CO1
feature: point to point, Straight line and Continuous path.			CO3
2.2 Designating axis and motion in CNC machines, CNC Tooling: need			
and importance; Automatic Tool changer (ATC) & Tool Magazines			
2.3 Tooling for Machining Centers; Tooling for Turning centers; Tool			
presetting and equipment, Flexible tooling system.			
3. MANUAL PART PROGRAMMING			
3.1 Fundamentals of part programming; Programming Formats; G and			
M Codes, NC words, Interpolation: Linear and Circular	15	10	CO2
3.2 Procedure for developing manual part program; Part program for			CO3
point to point machining; Straight line machining; curved path/surface			CO4
machining; Radius and Tool length compensation.	_		
3.3 Part program for Turning center and Machining center.			
4 COMPUTER ASSISTED PART PROGRAMMING			
4.1 Introduction, Types of programming Languages, Basics of APT	15	10	CO1
Program, Procedure for developing APT program			CO2
4.2 APT Language structure, APT word definitions, APT program			CO3
statements/Commands	_		CO4
4.3 Compilation control Commands, Part program using APT			
statements/commands. 5 REPETITIVE PROGRAMMING AND ADVANCED SYSTEMS			
	-		
5.1 Introduction/Meaning of repetitive programming, Importance of sub-	15	10	CO1
routines, sub program, Do loops & fixed/canned cycles	13	10	CO1
5.2 Write Manual part program and APT program using sub-routines, sub program, Do loops Applicability and use of fixed cycle/canned cycle			CO_2 CO3
in part program			CO3 CO4
5.3 Fundamentals of FMC / FMS, CIMS, ARS, AGV, CMM and Robot.	-		
Total	75	48	
10(01	15	U	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, Videos, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	NC technology	08	15
2	Numerical Control M/C Tools	10	15
3	Manual part programming	10	15
4	Computer aided part programming	10	15
5	Repetitive programming and Advanced Systems	10	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Practical Title	
1	Industry visits for Numerical Control System and configuration of CNC setup on shop floor.	3
2	Exercise on part program- Writing, entering and editing on CNC machines (Lathe/Machining Centre).	5
3	Industry visits for tooling for CNC Machine.	4
4	Develop a part program for lathe operation like plain turning, facing, taper turning operation. Thread cutting operation etc. Make a job on CNC turning center.	5
5	Develop a part program for milling operations like plain milling, slot milling, pocket milling, drilling etc. Make job on CNC machining center.	5
6	Visit to industries to study the application of NC/CNC technology in manufacturing operations.	3
	Total	25

Directorate of Technical Education, Goa State 9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	P N Rao, N K Tewari, T K Kundra	Computer aided Manufacturing	Tata McGraw Hill
2	M. Adithan, M & B. S. Pabla	CNC Machines – Programming & Applications	Wiley Eastern Ltd,
3	Korem, Y. & J.B. Uri	Numerical Control of Manufacturing System	McGraw Hill.
4	Mikell P. Groover	Automation, Production systems, Computer integrated manufacturing	Pearson
5	Mikell P. Groover, Emory W. Zimmer JR	CAD/CAM Computer Aided Design and Manufacturing	Prentice Hall of India

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1	ISO Standard	G and M Codes for Machining center	Manufacture of Machine
2	ISO Standard	G and M Codes for Turning center	Manufacture of Machine

(MC 623) POWER PLANT ENGINEERING

1. COURSE OBJECTIVE:

Power generating capacity and energy consumption are direct measures of development of a nation. Different types of powerplants are set up in our country for generating power. Also, some industries set up their own captive power plants in order to be self-sufficient. Efficient operation of these powerplants with minimum impact on environment is essential for sustainable development. After studying this course students will be able to operate and maintain various types of power plants.

2. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Peri	iods/V	Veek	Total		Exan	nination	n Scheme	
course title	(iı	n hou	rs)	Hours	The	ory	Pra	actical	Total
					Ma	rks	Μ	larks	Marks
(MC 623)	L	Т	Р	H	TH	TM	TW	PR/OR	
POWER PLANT	03	-	02	05	75	25	25	25	150
ENGINEERING									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC623.CO1: Describe construction and working of power plants.

MC623.CO2: Evaluate various performance parameters of a power plant and its cycles.

MC623.CO3: Manage fuel handling & waste disposal in power plants.

MC623.CO4: Select the power plant for a given set of conditions.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	1	1	1	1	1
CO2	3	2	2	2	2	3	1	2	2
CO3	3	2	2	2	3	3	2	2	3
CO4	3	3	3	2	3	3	2	3	2

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

1.2 Site selection for hydroelectric power plant 1.3 Classification of hydroelectric power plant 1.4 General arrangement of storage type hydroelectric power plant and its operation 1.5 Advantages of hydroelectric power plant. 1.6 Environmental aspect of hydroelectric power plant 2 STEAM AND GAS TURBINE POWER PLANT 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system	I 12 31	Thr 07 20	CO1 CO4 CO1 CO3 CO4
1.1 Introduction 1.2 Site selection for hydroelectric power plant 1.3 Classification of hydroelectric power plant 1.4 General arrangement of storage type hydroelectric power plant and 1.4 General arrangement of storage type hydroelectric power plant and 1.5 Advantages of hydroelectric power plant. 1.6 Environmental aspect of hydroelectric power plant 2 STEAM AND GAS TURBINE POWER PLANT 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant 2.1.1 Coal based steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system			CO4 CO1 CO3
1.2 Site selection for hydroelectric power plant 1.3 Classification of hydroelectric power plant 1.4 General arrangement of storage type hydroelectric power plant and its operation 1.5 Advantages of hydroelectric power plant. 1.6 Environmental aspect of hydroelectric power plant 2 STEAM AND GAS TURBINE POWER PLANT 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system			CO4 CO1 CO3
1.3 Classification of hydroelectric power plant 1.4 General arrangement of storage type hydroelectric power plant and 1.4 General arrangement of storage type hydroelectric power plant and 1.5 Advantages of hydroelectric power plant. 1.6 Environmental aspect of hydroelectric power plant 2 STEAM AND GAS TURBINE POWER PLANT 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system	31	20	CO1 CO3
1.4 General arrangement of storage type hydroelectric power plant and its operation 1.5 Advantages of hydroelectric power plant. 1.6 Environmental aspect of hydroelectric power plant 2 STEAM AND GAS TURBINE POWER PLANT 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system	31	20	CO3
its operation 1.5 Advantages of hydroelectric power plant. 1.6 Environmental aspect of hydroelectric power plant 2 2 STEAM AND GAS TURBINE POWER PLANT 2 2.1 Steam turbine power plant 2 2.1.1 Coal based steam turbine power plant 3 Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system	31	20	CO3
1.5 Advantages of hydroelectric power plant. 1.6 Environmental aspect of hydroelectric power plant 2 STEAM AND GAS TURBINE POWER PLANT 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system	31	20	CO3
1.6 Environmental aspect of hydroelectric power plant 2 STEAM AND GAS TURBINE POWER PLANT 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system	31	20	CO3
2 STEAM AND GAS TURBINE POWER PLANT 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system	31	20	CO3
 2.1 Steam turbine power plant 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system 	31	20	CO3
 2.1.1 Coal based steam turbine power plant Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system 	31	20	CO3
Introduction, Steam cycles: Rankine cycle, Modified Rankine cycle, reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system	31	20	CO3
reheat cycle, Regenerating cycle, Layout of modern coal-based steam power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner- cyclone burner. 2.1.3 Ash handling system			
 power plant, working of steam power plant, site selection for steam power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system 			CO4
power plant 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner- cyclone burner. 2.1.3 Ash handling system			
 2.1.2 Coal handling system Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner-cyclone burner. 2.1.3 Ash handling system 			
Equipment's used for out plant, storage and in plant handling of coal. Pulverized fuel handling system- Bin system, Pulverized fuel burner- cyclone burner. 2.1.3 Ash handling system			
Pulverized fuel handling system- Bin system, Pulverized fuel burner- cyclone burner. 2.1.3 Ash handling system			
cyclone burner. 2.1.3 Ash handling system			
2.1.3 Ash handling system		1	
I arout of och handling mlant machanical and Decouver's A-1 111'			
Layout of ash handling plant, mechanical and Pneumatic Ash handling			
system.			
2.1.4 Boiler Feed water treatment			
De concentration or blow down, De aeration, Demineralization, Ion			
exchange process.			
2.1.5 Pollution from thermal power plant : Air pollution and control equipment's (cyclone separator, ESP), solid waste and thermal pollution			
and methods to reduce it.			
and memods to reduce it.			
2.2 Gas turbine power plant			
Introduction, Gas turbine cycle, Classification of gas turbine power			
plant- working of open and close cycle gas turbine power plant,			
Advantages of gas turbine power plant, thermal refinement of gas			
turbine power plant Pollution from gas turbing power plant and its control			
Pollution from gas turbine power plant and its control 2.3 combined cycle power plant			
Construction and working of combined cycle power plant, advantages			
of using combined cycle.			
	12	8	CO1
3.1 Introduction, layout, construction and working of following		0	CO1 CO3
subsystems: Air intake system, fuel system, exhaust system, cooling			CO4
system and lubrication system			
3.2 Criteria for selection of diesel electric power plant			
3.3 Synchronizing Diesel generating power with grid supply and			
automatic change over.			

12	08	CO1
		CO3
		CO4
08	05	CO2
		CO4
75	48	
	08	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of lectures	Marks
1	Hydroelectric power plant		07	12
2	Steam and gas turbine power plant		20	31
3	Diesel electric power plant		08	12
4	Nuclear power plant		08	12
5	Fluctuating loads on power plant		05	08
		Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Collecting data regarding different types of power plant in India and their present power development status.	5
2.	Case Study on performance enhancement of any one type of power plant	4
3.	Prepare annual maintenance plan for any power plant.	4
4.	Operation of Coal Handling System (Field Visit/Video Presentation)	2
5.	Operation of Ash Handling System (Video Presentation)	2
6.	Operation and maintenance of a nuclear reactor (Video Presentation)	2
7.	Prepare report on Heat recovery system in a power plant	4
8.	Report on Field visit to power plant/ Video Presentation	2
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Arora and	A course in power plant	DhanpatRai and Co
	Domkundwar	engineering	
2	P. K. Nag	Power plant engineering	Tata McGraw Hill
3	A. Chakrabarti and	A text book of Power	DhanpatRai and Co
	M. L. Soni	System Engineering	
4	Er. R.K.Rajput	Power Plant Engineering	Laxmi Publication

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Thomas C. Elliott	Standard handbook of	Tata McGraw Hill
		power plant engineering	

1. COURSE OBJECTIVES:

With rapid advances in industrial processes, new types of risks and hazards are being increasingly introduced. Safety of life and assets has always been a top priority in any industry. Keeping this in mind, this course is designed to acquaint the students with safety norms & principles practiced in industries.

2. TEACHING AND EXAMINATION SCHEME

Semester V	I								
Course code &	Per	iods/V	Veek	Total		n Scheme			
course title	(i	n hou	rs)	Hours	Theory Marks		Practical Marks		Total Marks
(MC626) (SAFETY	L	Т	Р	Н	ТН	TM	TW	PR/OR	
ENGINEERING	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course the students will able to:

MC626.CO1: Implement various safety practices in working environment.

MC626.CO2: Identify the causes of accident in the workplace.

MC626.CO3: Analyze the hazards at work environment

MC626.CO4: Select appropriate personal protective equipment.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	3	3	2	1	2
CO2	3	3	2	2	2	2	2	2	3
CO3	3	3	2	2	2	2	2	2	2
CO4	3	3	3	2	3	2	2	2	3

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

I = Marks Thr = Teaching hours CO = Course Outcomes			
Jnit	M	Thr	CO
INDUSTRIAL SAFETY AND FACTORIES ACT			CO1
1.1 Introduction-Safety -Goals of safety engineering.			CO2
1.2 Need for safety. Safety and productivity.			
1.3 Safety organization- objectives, types, functions,	11	8	
1.4 Role of management, supervisors, workmen, unions,			
government and voluntary agencies in safety,			
1.5 Safety policy,			
1.6 Safety Officer-responsibilities& authority.			
1.7 Safety committee-need, types & advantages.			
1.8 General factories act related to safety of employees and			
machineries			
1.9 Introduction to National Institute for Occupational Safety and			
Health (NIOSH), Environmental Protection Agency (EPA) &			
Occupational Safety and Health Administration (OSHA)			
1.10. Introduction to ISO Standards for Safety & Environment			
(ISO 45001,ISO14001)			
2 ACCIDENT AND INSURANCE			
2.1 Definition of accidents, Injury,			CO1
2.2 Causes of accidents and factors affecting it, Unsafe act, Unsafe			CO2
Condition,			CO3
2.3 Classification of accidents,	20	10	
2.4 Accident prevention method-Engineering, Education and		10	
Enforcement.			
2.5 Accident report form;			
2.6 Benefits of Accident report forms;			
2.7 Cost of accidents			
2.8 Accident investigation – Why? When? Where? Who? & How?			
2.9 Case study on accidents investigation, Job safety analysis (JSA)			
5 sigma			
2.10 Introduction to Insurance, Types and comparison.			

Directorate of Technical Education,	<u>60a</u>	State		-
3. SAFETY EDUCATION & HOUSEKEEPING		12	8	
3.1 Safety Education & Training -Importance,				C01
3.2 Various training methods,				CO2
3.3 Communication- purpose, barrier to communication.				CO3
3.4 Role of government agencies and private consulting agen	cies			
in safety training – creating awareness, awards, celebratio	ons,			
safety posters, safety displays, safety pledge, safety incent	tive			
scheme, safety campaign				
3.5 Housekeeping: Definition, Responsibility of management	and			
employees, Advantages of good housekeeping, 5 s of housekeeping.				
3.6 Work permit system- objectives, hot work and cold work				
permits.				
3.7 Entry into confined spaces.				
SAFETY IN MATERIAL HANDLING				
4.1 Classification of safety in Material Handling;				C01
4.2 Manual Handling; kinetic method of lifting				CO2
4.3 Fall- Definitions; Causes of common fall				CO3
4.4 Types of falls and safety regarding falls.		12	6	
4.5 Inbuilt safety in cranes, hoist and lift, chain pulley block,		12	0	
Mixers, conveyors				
5 HAZARDS IN INDUSTRY & THEIR PREVENTION				
5.1 Fire hazards and prevention: Types of Fires and relevantExtinguisl	hers,			CO1
Fire detection sensors				CO2
5.1 Machine Hazard: Types of machine hazards Common		20	16	CO3
safeguarding methods and devices;				CO4
5.2 Hazards in chemical industry: classification of hazardous				
chemicals; properties of flammable chemicals;				
5.3 safety in storage and transportation of				
flammable fluids;				
5.4 Types of chemical emergencies and their prevention.				
5.5 Noise: Introduction to noise; Effect of noise; Remedial				
measures to combat noise.				
5.6 Electrical hazards				
5.7 Personal protection in the work environment				
Types of Personal protective equipment-respiratory and non-				
espiratory equipment.				
7	Fotal	75	48	
6. COURSE DELIVERY:		1	1	1

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	INDUSTRIAL SAFETY AND FACTORIES ACT	8	11
2	ACCIDENT & INSURANCE COVERAGE	10	20
3	SAFETY EDUCATION & HOUSEKEEPING	8	12
4	SAFETY IN MATERIAL HANDLING	6	12
5	HAZARD IN INDUSTRY & THEIR PREVENTION	16	20
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practicals (At least Six))	Marks
1.	Visit to the Inspectorate of Factories & Boilers /safety agency and Prepare the report on safety measures followed in the industry.	
2.	Conduct a mock drill to handle emergency situation in the Institute.	
3.	Survey a nearby market and prepare a report on safety equipment and their specification available in market.	
4.	Prepare at least one safety poster or safety display that can be used in surrounding area	
5.	Prepare a report on root cause analysis of an industrial accident.	
6.	Identify different types of fires and select appropriate fire extinguisher	
7.	Select appropriate PPE for industrial environment	
8.	Prepare an action plan for disposal of industrial waste for prevention of health hazards.	
	Total	25

Directorate of Technical Education, Goa State 9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	NaseerElahi	Industrial Safety Management	Kalpaz Publication 2006
2	H.l. kalia	Industrial Safety And Human Behavior	Aitbs Publishers, India
3	A. N. Saxena	Industrial Safety	National Productivity Council 1978

(MC630) MAINTENANCE ENGINEERING

1. COURSE OBJECTIVES:

Maintenance engineering is one of the most common disciplines of an industrial organisation. A diploma holder must have a fair knowledge of the maintenance management principles and maintenance tasks to be performed in the industry. This course is designed to impart necessary knowledge to students in maintenance engineering.

2. TEACHING AND EXAMINATION SCHEME

Semester									
Course code &	Peri	iods/V	Veek	Total	Total Examination Scheme				
course title	(iı	n hou	rs)	Hours	Theory Marks		Practical Marks		Total Marks
MC630	L	Т	Р	Н	TH	TM	TW	PR/OR	
MAINTENANCE ENGINEERING	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC630.CO1: Identify the various maintenance practices adopted in industries.

MC630.CO2: Prepare an estimate of given maintenance task.

MC630.CO3: Apply suitable techniques and engineering tools for maintenance work

MC630.CO4: Analyse the data acquired in condition monitoring of equipment.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	2	2	1	1	2
CO2	3	3	2	3	2	2	1	1	3
CO3	3	3	3	3	3	2	2	3	2
CO4	3	3	3	3	3	1	2	2	2

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Units	Μ	Thr	CO
1 CONCEPT OF MAINTENANCE & ITS PRACTICES			
1.1 Introduction to concept of maintenance: Need for maintenance,			
Types of maintenance practices: Breakdown, preventive, predictive.	15	08	CO1
Their comparison and areas of application.	10	00	001
Their comparison and areas of application.			
1.2 Preventive maintenance: Importance of preventive maintenance,			
Schedules of Preventive maintenance, Preventive maintenance,			
programming, Manpower & machine scheduling	-		
1.3 Shutdown maintenance: Planning for a shutdown by using			
PERT and CPM technique, efficient use of manpower & machinery			
during shut down period.	-		
1.4 Need for manuals and types of manual			
Contents of maintenance manuals, Manual writing or reporting,			
Maintenance practices. Systematic recording of maintenance viz.			
Maintaining log books and history cards.			
2 ECONOMICS OF MAINTENANCE	-		
2.1 Maintenance stores control, Maintenance store rooms		_	~~~
Inventory & classification of inventory related to maintenance	9	7	CO2
Standardisation of maintenance parts.			
2.2 Approach to maintenance estimation.			
Classification of jobs, Preparation of estimates			
Estimating techniques and selection of estimating methods			
3 PREDICTIVE MAINTENANCE & CONDITIONING			
MONITORING	18	12	CO4
3.1 Importance of predictive maintenance			
Introduction to programming of predictive maintenance: Detection,			
analysis and correction			
Vibration as a parameter for condition monitoring:			
3.2Introduction to vibration of simple spring mass system.,	1		
Terminologies used in vibration monitoring-vibration amplitudes,			
Displacement, Velocity, Acceleration, Use & selection of vibration			
amplitude parameter, Detection of defects in rolling elements bearing			
& gear, establishing levels of vibration, Baseline, warning & danger			
limits, Reference standards & charts used in defining			
levels.			
3.3 Instruments used in vibration monitoring: Displacement			
pickups, Velocity pickups, Accelerometers, Spike energy meter and			
Stroboscope.			
3.4 Vibration analysis. Introduction to machine signatures, Analysis			
of common defects using vibration monitoring instruments viz			
Unbalance, misalignment, looseness & Defects in Rolling Contact			
bearings.			
4 LUBRICATION			<u> </u>
	10	7	CO2
4.1 Types of lubricants: Liquid, semi fluid and solid, Requirementsof	12	/	CO3
lubricants, Selection of lubricants for various applications using			
some, available commercial grades,	-		
4.2 Various modes of lubrication			
Lubrication methods: Ring type, Cup type, Wick, Circulating			

	r	i i	1
type, Grease gun, Lubrication schedules;			
5 MAINTENANCE OF MACHINES & RECONDITIONING			
OF COMPONENTS			
5.1 Reconditioning and repair of a. Flat surfaces, b. Shafts and	21	14	CO3
spindles, c. bushes, d. keys and keyway, e. Gears, f. Valves;			
Metal spraying, welding, grinding and re-boring for reconditioning.			
5.2 Bearings: Pulling out and installing RC bearings, maintenanceof			
journal bearings, Bearing lubrication.			
Belts & Seals: Types of oil seals, Failure of oil seals, Belt tension			
adjustment, care and precautions			
Servicing of hydraulic pistons cylinder arrangement, Servicing of			
hydraulic and pneumatic valves.			
5.3 Maintenance of Reciprocating air compressor-Valves, piston			
rings, cylinder and bearings. Trouble shooting.			
Centrifugal pump- Maintenance of wearing ring, stuffing box,			
mechanical seal, Troubleshooting.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No	Unit		Number of lectures	Marks
1	Concept of Maintenance & Practices		10	15
2	Economics of Maintenance		7	9
3	Predictive Maintenance & Conditioning Monitoring		12	18
4	Lubrication		9	15
5	Maintenance of machines & Reconditioning of components		10	18
	To	otal	48	75

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Minimum 08 Practicals to be conducted)	Marks
1	Demonstrate use of different types of tools in maintenance work.	
2	Demonstrate mounting and dismounting of rolling contact bearing.	
3	Prepare a maintenance schedule using PERT and C.P.M. Technique.	
4	Record and analyse vibration data for condition monitoring.	
5	Prepare a maintenance estimate for a given task.	
6	Use maintenance manual to carry out a maintenance task.	
7	Do alignment of coupled shafts using dial gauges.	
8	Replace gland packaging of a gland and stuffing box provided in a machine such as centrifugal pump.	
9	Dismantle, Inspect and assemble hydraulic/pneumatic valve and cylinder.	
10	Prepare troubleshooting chart for reciprocating compressor.	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	S.N.Bhattacharya	Installation, servicing & maintenance	S.Chand & Co
2	Sushil Kumar Srivastava	Maintenance Engineering and Maintenance	S.Chand & Co
3	Lindley R Higgins	Maintenance Engineering Handbook	Tata Mc Graw Hill publisher

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Carl A. Nelson	Millwright and Mechanics Guide	Theodore Audel & Co.

AUDIT COURSE

(AC102) INDIAN CONSTITUTION

1. COURSE OBJECTIVES:

As a proud citizen of this country every student must be aware about the Indian Constitution to appreciate the provisions available for the people of this biggest democracy in Indian Constitution so that the youth of this country plays active role in development of the country by participating in the formation of sensitive and proactive Government at national and state level. This course intends to make students aware about various constituents of the Indian Constitution.

2. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code & Periods/Week Tot				Total	Examination Scheme				
course title	(iı	n hou	rs)	Hours	Hours Theory	Practical		Total	
					M	arks	\mathbf{N}	larks	Marks
(AC102) INDIAN	L	Т	P	H	TH	TM	TW	PR/OR	
CONSTITUTION	2	-	-	2	-	-	-	-	-

3. Course Content

 Unit 1 - The Constitution - Introduction The History of the Making of the Indian Constitution Preamble and the Basic Structure, and its interpretation Fundamental Rights and Duties and their interpretation State Policy Principles
Unit 2 – Union Government
Structure of the Indian Union
President – Role and Power
Prime Minister and Council of Ministers
Lok Sabha and Rajya Sabha
Unit 3 – State Government
• Governor – Role and Power
Chief Minister and Council of Ministers
State Secretariat
Unit 4 – Local Administration
District Administration
Municipal Corporation
• Zila Panchayat
Unit 5 – Election Commission
Role and Functioning
Chief Election Commissioner
State Election Commission

4. Suggested Learning Resources:

Title of Book Author Publication

1. Ethics and Politics of the Indian Constitution

Rajeev Bhargava Oxford University Press, New Delhi,2008

2. The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3. Introduction to the Constitution of India

DD Basu Lexis Nexis; Twenty-Third 2018 edition

5. Suggested Software/Learning Websites:

a. https://www.constitution.org/cons/india/const.html

b. http://www.legislative.gov.in/constitution-of-india

c. https://www.sci.gov.in/constitution

d. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-ofindia/