PROGRAMME STRUCTURE

FOR

DIPLOMA PROGRAMME IN

SHIPBUILDING ENGINEEERING

UNDER RATIONALISED SEMESTER SYSTEM

(IMPLEMENTED FROM ACADEMIC YEAR 2020-2021)

BOARD OF TECHNICAL EDUCATION, GOA STATE

DTE Building, Alto Porvorim, Bardez, Goa 403521 Ph. +91-832-2413571, +91-832-2412146 Fax +91-832-2413572 Email: <u>dir-dte.goa@nic.in</u>

March 2020

DIPLOMA IN SHIPBUILDING ENGINEERING

(GC101) Communication Skills

1. COURSE OBJECTIVE :

The course aims to develop Communication skills in English by improving students' ability to write ,speak, listen and read effectively. Emphasis is also laid on students' personality development, helping them to build their confidence in interpersonal / group communication.

2. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course code &			riods/	Week	Total	Examination Scheme				
course title		(in hours)		Hours	Theory		Practical		Total	
						Ma	rks	Μ	larks	Marks
(GC10)1)	L	Т	P	Н	TH	TM	TW	PR/OR	
Communi	cation	-	-	02	32	-	-	25	25	50
Skill	S									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to: GC101.CO1 Understand the essentials of effective Communication. GC101CO2 Develop reading. writing, speaking, listening and effective presentation skills.

GC101.CO3 Select the appropriate mode of Communication.

GC101.CO4 Demonstrate reading. writing, speaking, listening and effective presentation skills.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	0	0	0	0	3	3	3
CO2	1	0	1	0	3	3	3
CO3	1	0	1	0	3	3	3
CO4	1	0	0	0	3	3	3

Relationship : Low-1 Medium-2 High-3

M Marks	=	Phr = Practical hou	urs	CO Outco		Course			
Unit							Μ	Phr	СО
1 UNI COMMU		NAME: 1 CATION SKILLS	FUN	NDAMI	ENTAI	LS OF	-		CO1 CO2

	<u>г</u>	01	002
1.1 Communication Skills fundamentals Definition, communication process, importance of Communication Skills, essentials of effective communication		01	CO3 CO4
1.2 Types of communication : verbal Communication and Nonverbal communication (Body language, facial expressions, gestures, eye contact, posture, dress and grooming/personal appearance, deportment, personal hygiene) Paralinguistic (Volume, pace, pitch, pauses)		02	
1.3 Barriers to communication: physical barriers, psychological barriers and cultural barriers		01	
2. Unit: PRESENTATION SKILLS			
2.1 Presentations: Methods and style of presentation, Importance, planning a presentation, venue selection, audience awareness (age, gender, profession background, educational and social background) time and duration, audio visual aids (OHP, LCD projector, flip charts, white/black/green board, computer, microphone)		02	CO2 CO3 CO4
2.2 Public speaking: preparatory steps, tips for good beginning and end, delivery style, techniques for a good speech (repetition, signs, pictures, humor), body language		02	
3 UNIT: TECHNICAL Writing			
3.1 Report writing Functions and parts of a report, Qualities of a good report, and types: Report on any institute function, Accident report, Industrial visit Report		04	
 3.2 Business letters Principles of effective letter writing, parts of a business letter, formats (Full block style, Semi block style, modified block style) Routine/ Generic letters (letter to the heads of the institute, letter to the heads of various departments/sections of the institute) Types of letters: Enquiry Letter, Quotation, Purchase Order, Letter of Complaint 3.3 Job application Tips for a good C.V and a Resume 		06 02	CO1 CO2 CO4
4 UNIT GRAMMAR	_		CO1

4.1 Fundamentals of English writing Subject verb agreement, homonyms, homophones, homographs, articles, Punctuation, synonyms, fundamentals of sentence construction		02	CO2 CO4
4.2 Paragraph Writing: Developing Topics (the main idea), body (supporting sentences), conclusion, proof reading		02	
 UNIT V: LANGUAGE WORKSHOP 5.1 Reading Skills strategies to use for building vocabulary and reading fluencies (read extensively, identify new words, use of dictionary, online dictionary apps), reading comprehension, pronunciation, debate, role play, 5.2 Listening Skills How to listen effectively, listening comprehension 	-	08	CO1 CO2 CO4
5.3 Speaking skills speech, group discussion			
5.4 Writing skills précis writing, comprehension			
Total		32	

The Course will be delivered through lectures, class room interactions, videos, exercises

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		NO of lectures	Marks
1	Fundamental of Communications skills		04	-
2	Presentation Skills		04	-
3	Technical Writing		12	-
4	Grammar		04	-
5	Language workshop		08	-
		Total	32	25

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

1. Practical Title: Fundamental of Communications skills	
i. Comprehension	
ii. Précis writing	
iii. Self-Introduction	
2 Practical Title: Presentation Skills	
iv. Extempore speech	
v. Presentation on any given Topic	
3 Practical Title: Technical Writing	
vi. Accident Report	
vii. Report on Institute function	
viii. Industrial visit report	

ix.	Generic letters to the heads of various department/ Sections of the institute
х.	Inquiry letter
xi.	Quotation
xii.	Purchase or supply order
xiii.	Complaint letter
xiv.	Job application
4	Grammar
XV.	Exercises in subject – verb agreement
xvi.	Exercises in use of preposition
xvii.	Exercises in use of Homophones, homonyms, homographs
xviii.	Exercises in use of punctuation
xix.	Exercises relating to correcting the sentences
XX.	Paragraph writing
5	Language workshop
xxi.	Exercises to improve Reading skills
xxii.	Exercises to improve Writing skills
xxiii.	Group discussion
xxiv.	Listening comprehension

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R. C. Sharma & Krishna	Business Correspondence and	Tata McGraw Hill
	Mohan	Technical Writing	
2	P. Prasad, Sharma, K.	The Functional aspects of	S.k. Kataria& sons
	Rajendra	communication skills	
3	SanjayKumar,Pushpa Lata	Communication Skills	Oxford University
			Press
4	A.K.Jain,A.M.Shaikh&Pra	Professional communication	S.Chand
	vin S R Bhatia	Skills	
5	Wren & Martin	High School English Grammar	S. Chand, N. Delhi
		& Composition	

10.Reference Books for further study

S. No.	Author	Title of Books	Publishers	
1	Raul R. Timm	How to make winning presentations	Sneha Printers	
2	Dale Carnegie,	Stand and Deliver, How to become	Cox & Wyman, UK	
	Training CPI	a masterful communicator and		
		public speaker		
3	John Seely	The Oxford Guide to Effective	Oxford University	
		Writing and speaking	Press	

Autobiographies, self-help books, Audio speeches given by famous personalities Internet and Web Resources https://www.grammarly.com/ https://www.bbc.co.uk/programmes/articles/5QFnVy3xzT5htTh13cmP2P8/teacher-resources https://Ted.com Videos and Multimedia Tutorials

https://you.tu.be/AykYRO5d_II

(GC102) Engineering Mathematics I

1. COURSE OBJECTIVE:

1. The course is aimed at providing mathematical knowledge, developing computational skills and reasoning. It also helps students to think logically and in systematic manner so as to grasp mathematical concepts easily. It helps to build analytical thinking which play an important role in solving real world problems in all scientific discipline.

Semester	Ι									
Course code & course title		Peri	Periods/Week		Total	Examination Scheme				
		(in hours)		hours	Theory Marks		Term Work	Total Marks		
(GC102)		L	Т	P	Н	TH	TM	TW		
Engg.Math	s I	4	2	-	96	75	25	25	125	

2.TEACHING AND EXAMINATION SCHEME

3.COURSE OUTCOMES:

GC102.CO1. Understand the basic mathematical concepts for Engineering applications.

GC102.CO2. Identify and use appropriate formulae for solving practical engineering

problems

GC102.CO3. Apply formulae of algebra, geometry, trigonometry and calculus for solving

problems.

GC102.CO4 . Co-relate mathematical formulae to practical problems.

4.Mapping Course Outcomes with Program Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	3	2	1	0	0	0	2
CO2	3	3	1	0	1	0	1
CO3	2	2	3	3	2	0	1
CO4	2	3	3	2	1	1	1

Relationship :Low-1 Medium-2 High-3

	ED COURSE CONTENT				1	
M = Marks	Thr = Teaching hours	CO = Objectives	Course			
		Objectives				
Unit				Ma	Thr	CO
				rks		
1 MATHEM	IATICS FUNDAMENTA	L		8	6	CO1
1.1 Polynon	nials: Types of polynomi	als, addition s	ubtraction,	3	2	-
(no ques	stion to be asked), Multip	plication and c	livision of			
polynom	ials					
1.2 : Algebr	aic equations:Different ty	pes of equation	s and their	3	2	-
-	c meaning(line,circle paral			5	-	
	and three variables and so	olving equation	s with two			
	e variables					
	c equations and nature of the temperature of temperatur		a 'a' and	2	2	-
base'10'	time. Deminuon of log,	log with bas	e e allu	2	2	
-	log, log and antilog, prob	lems using defi	inition and			
properties of	log.					
2.STRAIGH	T LINES AND CIRCLE	S		15	14	CO1,
2.1: Straight	line: Intercept, slope, inte	rsection of line	s	8	7	CO4
Equations of	line: 1. Slope intercept for	rm, slope point	form, two			
-	parallel and perpendicular					
Perpendicula	r distance of a point from 1	ine				
-	-			_		-
2.2: Circle: (circle as a locus, Centre, di	ameter, chord o	of a circle	7	7	
Equations of	circle: Centre radius form	n, diameter for	m, general			
form and sun	18					
3. TRIGON	OMETRY					CO1,
						CO3
-	nd measurement, degree an			12	15	
	ums, arc length and area of metric ratios and identities	sector and sum	IS			
0	netric ratios of compound a	and allied anole	es			
U	formulae $sinA+sinB$, $cosA$	U				
3.5: Sum and						
3.6: Multiple						
3.7 : Sine rule	e, Cosine rule in triangle, so	olution of triang	gle			
4: MENSU	RATION			10	6	CO1,
	· ·				-	,

 4.1: Areas of 2D figures like quadrilaterals, circle triangle etc (no questions to be asked) 4.2: Surface area and volumes of cube, sphere, cylinder, cone, (no question to be asked) Surface areas and volumes of prism, pyramid, 4.3: Frustum of cone, pyramid and their surface areas and volumes. 4.4: Simpson's 1/3 rd rule for area and volume 			CO4
5 :CALCULUS	30	23	C01,
5.1:Limits 5.1.1 : Pre requisite : Sets , intervals, relation and function (no questions to be asked) 5.1.2 : Limit of a function , algebraic properties of limits 5.1.3: Limits of algebraic, trigonometric, exponential, logarithmic functions	7	6	- CO2, CO3, CO4
 5.2 : Derivatives 5.2 .1: Derivative definition by first principle (no question to be asked) 5.2.2: Standard formulae, Algebraic properties of derivative (u±v) etc. 5.2.3: Derivatives of algebraic, trigonometric, exponential, logarithmic functions 5.2.4: Derivative of product of functions (uv rule). 5.2.6: Derivative of quotient of functions (u/v rule) 5.2.7: Derivative of composite functions 5.2.8: Derivative of parametric functions 5.2.9: Derivative of implicit functions 5.2.10: Logarithmic differentiations 5.2.11: Second order derivatives (no question to be asked) 	15	12	
 5.3 : Applications of derivatives 5.3.1: Application to the geometry: i) derivative as a slope of a tangent ii) to find equations of tangent and normal at given point on the curve 5.3.2: Application to the Linear motion:i) displacement, velocity, acceleration 5.3.3: Application to the rate measure i) to find rate change in area and volume etc 5.3.4: Maxima and minima 	8	5	
Total	75	64	

The Course will be delivered through lectures, class room interactions, exercises

7. SPECIFICATION TABLE FOR THEORY

Unit No	Unit	Number of lectures	Marks
1	Mathematics Fundamental	06	8
2	Straight line and circle	14	15
3	Trigonometry	15	12
4	Mensuration	06	10
5	Calculus	23	30
	Total	64	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

- Tutorial books should be maintained by students (5 marks)
- Two home assignments per semester (5 marks)

The Two assignments each comprises of thirty questions which includes 15 short questions and fifteen long questions. First assignment will cover fifty percent of syllabus

and second assignment will cover remaining portion of syllabus

• Topic-wise class assignment (15 marks)

Class assignment comprises of ten short and ten long questions.

9. LEARNING RESOURCES

Text	Books
IUAU	DUUMS

S. No.	Title of Books	Author	Publishers
1	Mathematics for Polytechnic Students(Basic Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune
2	Mathematics for Polytechnic Students(Engineering Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune
3	S.B. Gore, M.B.Patil, S.P. Pawar	Applied Mathematics	Vrinda Publications

Reference Books for further study

S. No.	Title of Books	Author	Publishers
1	Applied Mathematics I	Dr. U.B.Jangam, K.P. Patil, Nalini Kumthekar	Nandu Printers& Publishers pvt. Ltd. Mumbai
2	Applied Mathematics for Polytechnics	H.K. Dass	CBS Publishers and distributers Pvt.Ltd. ,Pune
3	Set Theory and related topics	Seymour Lipschutz	McGraw-Hill

(GC103) APPLIED PHYSICS-I

1.COURSE OBJECTIVE :

On successful completion of the course, Students completing the Applied Physics I course will be able to demonstrate competency and understanding of the basic concepts found in, Units and Dimensions, Kinematics of motion in one dimension Force Work Power and Energy, Circular Motion and Gravitation, Properties of Matter and Heat and will be able to utilize the knowledge to demonstrate competency with experimental methods that are used to discover and verify the concepts related to content knowledge

2. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course code	&	Per	riods/V	Week	Total	Examination Scheme				
course title		(i	in hou	ırs)	Hours	The	ory	Pra	actical	Total
						Ma	rks	Μ	larks	Marks
(GC103) App	lied	L	Т	Р	Н	TH	TM	TW	PR/OR	
Physics I		03	0	02	80	75	25	25	-	125

3.COURSE OUTCOMES:

GC103.CO1: Understand the Fundamental concepts of physical quantities, Force, Power, Energy, Motion, Matter and heat transfer used in Engineering applications.

GC103.CO2: Explain the concepts of Dimensions, Work, Power, Energy ,Motion, properties of matter and heat transfer

GC103.CO3: Apply the Knowledge of Physical quantities, Types of motions, Force, work ,Power, properties of matter and heat transfer in Engineering applications

GC103. CO4: Analyze different types of Physical quantities, motions, properties of matter, and modes of heat transfer

4. Mapping Course Outcomes with Program Outcomes

Relationship: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn& Testing	Engg. Practices for Society,Sustainabilit y& Environment	Project Management	Life -long Learning
CO 1	3	1	1	3	2	0	3
CO 2	3	1	2	3	0	0	3
CO 3	3	1	2	2	0	1	1
CO 4	1	1	2	2	0	1	1

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN M = Marks Thr = Teaching hours CO = Course Outcomes]		
Unit	Thr	Μ	CO
1 UNIT NAME: UNITS AND DIMENSIONS	08	12	CO1,
1.1 Fundamental and Derived units,			CO2,
1.2 Different system of units, SI unit conversion from one system to other,			CO3,
1.3 Principle of Homogeneity,			CO4
1.4 Dimensions, dimensional formula,			
1.5 dimensional correctness of given equation using dimensions			
1.6 least count of vernier calliper and screw gauge			
1.7 zero errors in case of vernier calliper and screw gauge			
1.8 Types of error.			
2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE, WORK, POWER AND ENERGY	10	16	CO1, CO2,
2.1 Distance and displacement,			CO3,
2.2 Scalar and Vectors			CO4
2.3, Speed and Velocity, Uniform Velocity, ,			
2.4 Uniform acceleration, acceleration due to gravity			
2.5 Equation of motion (v=u+at, $v^2=u^2+2as$, s=ut+1/2at ²)(no derivation)			
2.6 Motion under gravity. Force and its unit.			
2.7 Work and its unit. Energy, law of conservation of energy,			
2.8. Kinetic and Potential energy equation and examples.			
3. UNIT NAME: Uniform Circular Motion and Gravitation	10	16	CO1,
3.1 Unifrom circular motion,			CO2,
3.2 Definition angular displacement, angular velocity, ,			CO3,
3.3 Conversion from rpm to rad/sec, $v=r\omega$, tangential velocity, radial			CO4
acceleration			
3.4 Centripetal force and centrifugal force, examples,			
3.5 Banking of roads, superelevation, expression for angle of banking			_
3.6 Newtons law of gravitation, acceleration due to gravity,			
3.7 Expression for acceleration due to gravity. Escape velocity, Critical			
velocity, and periodic time definition and expression (no derivation)			
3.8. Sattellite, types(Geosationary,communication remote sensing)			
4. UNIT NAME: PROPERTIES OF MATTER	10	16	CO1,
4.1 Elasticity,			CO2,
4.2 Stress, Strain, Hooke's law,			CO3,
4.3 Youngs Modulus,			CO4
4.4 Bulk Modulus, Rigidity Modulus,			
4.5 Stress v/s Strain graph			
4.6 Yield point, breaking stress, factor of safety, ,			
4.7 Surface tension definition and example			
4.8. Adhesive and cohesive force, application,			
4.9 liquid miniscus and angle of contact, capillarity,			
4.10 Expression for surface tension (no derivation), applications. viscocity,			
4.11 Definition velocity gradient, newtons law of viscocity, terminal			

velocity, stokes law,			
4.12 Streamline flow and turbulent flow, critical velocity, application of			
viscocity.			
5. UNIT NAME: HEAT	10	15	CO1,
5.1 Statements of boyles law, charles law, gay lussacs law			CO2,
5.2 General gas equation, specific heat definition and unit, Latent heat			CO3,
definition and unit			CO4
5.3 Modes of transfer of heat, conduction, convection and radiation,			
5.4 Conduction of heat through a metall rod,			
5.5 Variable and Steady state			
5.6 law of thermal conductivity (With Derivation)			
5.7 Applications of thermal conductivity,			
5.8. Thermal expansion of solids			
5.9 linear expansion, superficial expansion,]
5.10 Cubical Expansion			
5.11 Realtion betwenn α, β, γ (no derivation)			
5.12 Engineering applications of expansion of solids.]

The Course will be delivered through lectures, class room interactions, exercises and case studies. **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit No	Unit	Number of lectures	Marks
INU		lectures	
1	UNITS AND DIMENSIONS	8	12
2	MOTION IN ONE DIMENSION, FORCE, WORK AND	10	16
	ENERGY		
3	UNIFORM CIRCULAR MOTION AND GRAVITATION	10	16
4	PROPERTIES OF MATTER	10	16
5	HEAT	10	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS

No	Practicals	Marks
1.	Basic Conversion Techniques from one system of units to the other	25
2.	Use of Vernier callipers to find the Volume of Hollow cylinder, Block	25
3.	Use of Screw gauge to find the cross-sectional area of a wire and	25
	thickness of a clip	
4.	To find the Coefficient of Viscosity of a given liquid by stokes method	25
5.	To Find the coefficient of Thermal Conductivity by Searle's Method	25
6	To Find the Surface Tension of a given liquid by capillary rise method	25
7	To Find Young's Modulus by Searles Method	25
8	To Find acceleration due to gravity by simple pendulum method.	25
	Total (Average)	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers		
1	B G Dhande	Applied Physics of Polytechnics	Pune Vidyarthi Griha		
			Prakashan		
2	Bhandarkar	Applied Physics of Polytechnics	Vrinda publication		
3	R K Gaur and S L	Engineering Physics	Dhanpat Rai & Sons		
	Gupta		Delhi		
4	Dr. Vasudev R	A Text Book of Applied Physics for	Broadway Publishing		
	Bhagwat	Polytechnics	House		
5	B L Thereja	Engineering Technology	S. Chand		

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Halliday D and	Physics Part I-II	Wiley Eastern Ltd.
	Resnick		
2	Satish k. Gupta	ABC of Physics I&II	Modern Publisher
3	Saxena HC and	Applied Physics Vol I & II	S. Chand Publisher
	Singh Prabhakar		

(GC104) Applied Chemistry

1. COURSE OBJECTIVE:

Chemistry is the branch of Science which deals with the study of composition, properties and changes in matter. An understanding of the basic concepts of Applied Chemistry, chemical principles and chemical properties of materials is essential to all the engineers. The emphasis is on applying the knowledge of principles of chemistry in all the fields of engineering wherein students appreciate the significance of chemistry in day to day life. The subject develops in students the habit of scientific enquiry, the ability to investigate cause and effect relationship & the ability to interpret & analyze the results.

2. TEACHING AND EXAMINATION SCHEME

Semester I									
Course code &	Peri	iods/V	Veek	Total		Exan	ninatio	n Scheme	
course title	(in	n hou	rs)	Credits (Hours)	The Ma	·	-	actical [arks	Total Marks
(GN104) Applied	L	Т	Р	Н	TH	TM	TW	PR/OR	
Chemistry	3	-	2	80	75	25	25	-	125

3. COURSE OUTCOMES:

GC 104.CO1: Understand the fundamental concepts of Atomic Structure, electrochemistry, water quality, corrosion and polymers.

- GC 104.CO2: Explain the process of Chemical bonding, water softening, electroplating, corrosion control and polymerization
- GC 104.CO3: Relate the principles of Chemical Bonding, Electrolysis, water hardness for domestic and Industrial applications and properties of polymers.
- GC 104.CO4: Distinguish between types of Chemical bonding, Water softening methods, corrosion control methods, different processes of metal coating and different polymers.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentin g& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	3	2	1	1	2	1	1
CO2	2	3	2	1	3	1	2
CO3	3	2	2	2	3	1	2
CO4	3	2	2	2	2	1	1

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN M = Marks Thr = Teaching hours CO = Course Objectives									
Unit	Mks	Thr	CO						
UNIT 1.0 : ATOMIC STRUCTURE AND CHEMICAL BONDING	15	10	CO1						
			CO2						
1.1 <u>Atomic Structure</u>			CO3						
1.1.1 Fundamental particles and their characteristics.			CO4						
1.1.2 Energy levels - Definition & designation									
1.1.3 Sub Energy levels- Definition & designation									
1.1.4 Orbital – Concept & shape (s and p only)									
1.2 Quantum numbers									
1.2.1 Designation, definition, values.									
1.3 Electronic distribution (Elements from atomic Number 1-20)									
1.3.1 Bohr – Bury's laws for distribution of electrons in shells (1^{st} three									
laws only)									
1.3.2 Aufbau Principle. for distribution of electrons in sub-shells									
1.3.3 Pauli's Exclusion Principle.									
1.3.4 Hund's Rule of maximum multiplicity									
1.3.5 Orbital Electronic Configuration of elements (from atomic numbers 1									
to 20 only).									
1.4 Chemical Bonding									
1.4.1 Lewis and Longmuir concept of stable configuration.									
1.4.2 Electrovalent - Bond - Concept									
Formation of Electrovalent Compound (NaCL & MgO)									
1.4.3 Covalent Bond – Concept									
Formation of Colvalent Compounds (Cl ₂ , O ₂ , N ₂)									
1.4.4 Co-ordinate Bond - Concept									
Formation of Co-ordinate Compounds (O ₃)									
1.4.5 Properties of Electrovalent, Colvalent & Co-Ordinate compounds.									
UNIT 2.0 : WATER	15	10							
			CO1						
2.1 Hardness of Water			CO2						
2.1.1 Soft and Hard Water - Concept			CO3						
Soap Test (Chemical Equation not expected)			CO4						
2.1.2 Causes of Hardness									
2.1.3 Types of Hardness									
2.1.4 Degree of Hardness & Units of Hardness (mg/L & ppm)									
2.2 Disadvantages of Hard Water									
2.2.1 Domestic Purpose									
Drinking, cooking, Washing & Bathing.									
2.2.2 Industrial Purpose									

 (Paper Industry, Textile & Dyeing Industry, Sugar Industry, Bakery & Concrete Making) 2.2.3 Boilers- Steam Generation Purpose. Sludge formation – causes & Disadvantages (No chemical equation expected) 2.3 Water Softening 			-
2.3.1 Zeolite and Ion Exchange process of water softening2.4 Desalination of water			_
2.4.1 Electrodialysis & Reverse Osmosis process.2.4.2 pH- Concept, pH scale & Importance of pH			
UNIT 3.0 : ELECTROCHEMISTRY	12	08	CO1 CO2
 3.1 Electrolytic dissociation 3.1.1 Arrhenius theory of Electrolytic dissociation 3.1.2 Factors affecting degree of Ionization- nature of solute, nature of solvent, concentration of solution and temperature. 			CO3 CO4
 3.2 Electrolysis 3.2.1 Mechanism of Electrolysis. Ionization Reactions Reactions at cathode, Activity series of Cations. Reactions at Anode, Activity series of Anions. 			
 3.2.2 Electrolysis of Molten NaCl using Carbon Electrodes. Aqueous NaCl using Platinum Electrodes. Aqueous CuSO₄ using Platinum Electrodes. Aqueous CuSO4 using copper Electrodes. 			
3.3 Electrochemical series – Definition and Significance			
UNIT 4.0 : CORROSION AND ITS CONTROL	25	14	CO1
 4.1 Dry /Direct Chemical corrosion 4.1.1 Definition 4.1.2 Oxidation corrosion 4.1.3 Corrosion due to other gases. 			CO2 CO3 CO4
 4.3 Types of Electrochemical corrosion. 4.3.1 Galvanic Cell corrosion 4.3.2 Concentration cell corrosion(Metal ion concentration & differential Aeration) 			-
4.4 Corrosion Control Protection of metals by:			

4.4.1. Using Pure Metals & Metal alloys			
4.4.2 Proper designing			
4.4.3 Modifying the environment (De- aeration, Deactivation,			
Dehumidification, Alkaline neutralization)			
4.4.4 Cathodic protection (Sacrificial anode and Impressed current			
cathodic protection)			
4.4.5 Metal Coating (Galvanizing, Tinning, Metal-Spraying,			
Electroplating & powder coating)	08	06	CO1
LINUT 5. DOI VIMEDO	Uð	VO	CO1 CO2
UNIT 5: POLYMERS			CO2 CO3
5.1 Concept of Monomers & Polymers			CO3
			04
5.2 Polymerization- Definition.			
5. 2.1 Addition polymerization-Definition.			
5.2.2 General equation of polymerization of :-			
Ethylene to Polyethylene.			
Vinyl chloride to Polyvinylchloride			
Tetra fluoro ethylene to Poly tetra fluoroethylene(PTFE)			
5.2.3 Condensation Polymerization-Definition			
5.2.4 General Equation for formation of Phenol formaldehyde Resin.			
5.3 Plastics.			
5.3.1 Types of plastic (Thermosetting and Thermo softening), Examples			
5.3.2 Properties and applications of Poly-ethylene, PVC, polystyrene,			
Nylons, Bakelite & silicones.			
5.4 Rubber			
5.4.1 Natural Rubber			
5.4.2 Drawbacks of Crude rubber.			
5.4.3 Vulcanization of Rubber (General Equation)			
5.4.4 Rubber examples.			
5.4.5 Properties of Synthetic Rubber & related applications.			

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Mark s
1	ATOMIC STRUCTURE AND CHEMICAL BONDING	10	15
2	WATER	10	15
3	ELECTROCHEMISTRY	08	12
4	CORROSION & IT'S CONTROL	14	25
5	POLYMERS	06	08
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical						
	Practical Title						
1.	Double Acid-Base Titration using Phenolphthalein.						
2.	Acid- Base titration using Methyl orange.						
3.	Redox Titration of KMnO ₄ soln., FeSO ₄ soln. and Oxalic acid						
4.	Determination of degree of Hardness by E.D.T.A method.						
5.	Determination of Total Alkalinity of water sample.						
6.	Determination of Chloride content of water sample by Mohr's method.						
7.	pH- Metric titration.						
8.	Conduct metric Titration.						
9.	Determination of Conductivity of water samples from different water body						
	sources.						
10.	Corrosion Susceptibility of Aluminum to Acid or Base.						
11.	Determination of pH of different food items.						
	Total Marks: 25						
	No Class room Assignments						

* Any TEN of the above.

****Term Work Assessment Scheme**: 1. Performance:15 marks (Carrying out experiment, Readings, Calculations and Results)

2.Knowledge :05 Marks(Theory of the experiment)

3. Journal : 05 Marks

11. LEARNING RESOURCES

Text Books	
-------------------	--

I CAU DO											
S. No.	Author	Title of Books	Publishers								
1	M.M. Uppal	Text book of Engg. Chemistry	Khanna Publisher								
2	V.P.Mehta	Text book of Engg. Chemistry	Jain Bros. Delhi								
3	S.N Narkhede	Textbook of Engg. Chemistry	Niraj Prakashan								
5	S S Dara	A Textbook of Engg. Chemistry	S Chand & Co								
4	P.C. Jain and M.Jain	Engg. Chemistry.	Dhanpat Rai								
			Publishing Co.								

(GC105) Basic Engineering Practice (Electronics& Comp.) 1. COURSE OBJECTIVE:

The students will be able to acquire knowledge about safety aspects, firefighting, first-aid and carpentry, fitting, plumbing skills. The students will learn proper ways of using various hand tools, measuring devices in acquiring these skills and will also interpret simple electrical drawings/circuit diagrams.

2. TEACHING AND EXAMINATION SCHEME

Course	Periods/			Periods/ Total Examination Scheme						
Code & Course Title	Week (In Hours)				Hours	Theory Marks		Practical Marks		Total Marks
(GC 106)	L	Т	Р	Н	TH	TM	PR/OR	TW		
Basic										
Engineering	0	0	5	80	-	-	50	100	150	
Practice										

3. COURSE OUTCOMES:

PART A

On successful completion of the course, the student will be able to: GC106.CO1. Understand safety procedures to be followed in carpentry, fitting, and plumbing. GC106.CO2. Identify various tools used for carpentry, fitting, and plumbing. GC106.CO3: Demonstrate basic working skills in carpentry, fitting and plumbing.

GC106.CO4: Plan & execute a job/activity using job drawing.

PART B

On successful completion of the course, the student will be able to:

GC106.CO1. List the safety measures.to be observed in electrical workshop.

GC106.CO2. Identify various electrical tools, fittings used for electrical measurements & troubleshooting. GC106.CO3: Distinguish between single phase and three phase supply.

GC106.CO4: Plan & execute a job/activity from electrical circuit drawing.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

PART A

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	2	1	1	3	2	2	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-3

PART B

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	3	1	1	2	2	1	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-

M = Marks Hr = Practical Hours	CO = Course Outcomes			
Unit	Μ	Hr	CO	
1 General Safety, Housekeeping, Fire	10	06		
1.1Introduction to General Safety asped	cts of engineering workshop			CO1
1.2 Meaning and importance of housek	eeping.			
1.3 Fire hazards, fire triangle, types of	f fire extinguishers – selection			
and use.				
1.4Basic knowledge of first aid with	specific inputs on cuts, burns,			
electric shocks, artificial respiration, ha	ndling emergencies.			
2 Fitting Workshop Practice		30	18	
2.1 Introduction to the trade.				CO1
2.2 Introduction to various hand To	ols, Measuring and Marking			CO2

Tools, cutting tools, Holding tools, Striking tools			CO3
2.3 Types of files and filing methods.			05
2.4 Drill bits and drilling Processes, using portable and pillar drilling			
machine.			
2.5 Operations performed in fitting shop such as measuring, marking,			
chipping, filing, grinding, sawing, drilling			
2.6 Threading using taps and dies.			
3 Carpentry Workshop Practice	20	18	
3.1 Introduction to carpentry	20	10	CO1
3.2 Types of wood and its characteristics, forms of wood, defects in			CO1 CO2
timber and its identification, wood working hand tools			CO2 CO3
3.3 Wood working processes.			05
3.4 Different types of joints and their usage.			
3.5 Introduction to wood working machines:			
3.6 Lathe			
3.7 Circular saw			
3.8 Band saw			
3.9 Wood planner			
3.10 Universal wood working machine			
4 Electrical Workshop Practice	30	32	
4.1 Brief introduction to power distribution and Electrical Safety.	- 50	52	C01
4.2 Use of different hand tools used in electrical trade			CO1 CO2
4.3 Collection of details of motors and transformers.			CO2 CO3
			CO3
4.4Introduction to Control Panel and its various sections/components.4.5 Making of wire joints.			C04
4.6 Measurement of current, voltage, frequency and Power			
Consumption.			
1			
4.7 Connecting and starting of Induction Motor & Measurement of its speed. Changing of Direction of rotation of induction motor.			
1 00			
4.8 Introduction to commonly used electrical Fittings (Domestic &			
Industrial).			
4.9Wiring of Simple Electric Circuit (Bulb & plug point and switches) on wooden board			
4.10 Study, connection & use of Energy Meter			
4.11Testing of components using Series test lamp & Multimeter			
4.12Study of Fuses & practice replacement of Fuse			
4.13 Study & Troubleshooting of Tube Light	10	06	
5 Plumbing	10	06	CO1
5.1Plumbing tools, pipe fittings and method of joining pvc pipes.			CO1
5.2 Use of spirit level and plumb bob.			CO2
5.3 Minor repairs and replacement of fittings.			CO3
5.4 Reading of plumbing drawings.			
[Note: Plumbing restricted to domestic plumbing and pvc piping.]			
T_4_1	100	ØN	
Total	100	80	

The Course will be delivered through workshop practical sessions in mechanical and electrical workshops.

7. SPECIFICATION TABLE FOR PRACTICALS/ MACRO-LESSON PLAN

Unit No	Unit	Number of hrs.	Marks
1	General Safety, Housekeeping, Fire Fighting & First Aid	06	10
2	Fitting Workshop Practice	18	30
3	Carpentry Workshop Practice	18	20
4	Electrical Workshop Practice	32	30
5	Plumbing	06	10
	Total	80	100

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Hrs.
1	General Safety, Housekeeping, Fire Fighting & First Aid	06
а	Demonstration on use of Safety Measures while working in Workshop and	03
	use of safety signs.	
b	Demonstration on use of First Aid and Artificial Respiration procedure	03
	,Training on fire and emergency services (using video presentation /fire and	
	safety expert talk)	
2	Fitting Workshop Practice	18
а	Identification of various hand Tools, Measuring and Marking Tools,	03
	cutting tools, Holding tools, Striking tools	
b	Identification of various types of files and demonstration on filing methods.	03
с	Identification of various types of Drill bits, taps, dies and Drilling machines	03
	such as portable and Pillar Drilling machine.	
d	Job involving filing, marking, cutting operation on MS Flat.	06
e	Job involving Drilling and Tapping operation on MS flat.	03
3	Carpentry Workshop Practice	18
а	Identification of various types of woods and wood working hand tools	03
b	Identification of various types of Carpentry joints and their usage.	03
с	Introduction to wood working machines such as wood working Lathe,	03
	Circular saw ,Band saw, Wood planner, Universal wood working machine	
d	Job involving marking, measuring, planning, sawing, chiseling, joint	06
	preparation and assembly of wooden blocks.	
e	Preparation of job on wood working lathe.	03
4	Electrical Workshop Practice	32
а	Measurement of Single Phase and Three Phase supply Voltage using multimeter.	02
b	Identification of various hand tools used in electrical trade.	02
С	Measurement of electric circuit parameters using Ammeter, Voltmeter, Frequency meter, Wattmeter.	04

d	Making of Straight and T wire joints.	02
e	Testing of electrical components such as Choke, starter, Fuse, Switch using	02
	Series Test lamp and Multimeter	
f	Starting of induction motor using DOL Starter	02
g	Reversal of direction of rotation of Three phase induction motor	02
h	Identification of commonly used electrical fittings.	02
i	Wiring of simple electrical circuit using bulb and socket.	04
j	Measurement of Energy using Energy Meter.	02
k	Identification of Different types of Fuses and their replacement in circuit.	02
1	Testing of various components and connection of Tube light circuit.	02
m	Collecting Name plate Details of Motors and Transformers and operating	04
	and controlling speed of motor from Control panel.	
5	Plumbing	06
a	Identification of Plumbing tools and pipe fittings, Reading of plumbing	03
	drawings, methods of joining PVC pipes, use of spirit level and plumb bob	
	in piping.	
b	To carry out minor repairs and replacement of fittings.	03

9. LEARNING RESOURCES TEXT BOOKS

	BOOKS				
S.	Author	Title of Books	Publishers		
No.					
110.					
1	N. Sesha Prakash	Manual of Fire Safety	CBS Publishers and		
			Distributers		
2	S.K. Hajara-	Workshop Technology	Media Promoters		
	Chaudhary				
3	B.S. Raghuwanshi	Workshop Technology-	Dhanpat Rai and sons, New		
	Ū		Delhi		
4	R K Jain-	Production Technology	Khanna Publishers, New		
			Delhi		
5	H. S.Bawa	Workshop Technology	Tata McGraw Hill		
		1 00	Publishers, New Delhi		
6	Kent	Mechanical Engineering	John Wiley and Sons, New		
0	Kent	6 6	•		
		Hand book	York		
7	B.L. Theraja	Fundamentals of	S. Chand – New Delhi		
		Electrical Engineering and			
		Electronics			

REFERENCE BOOKS FOR FURTHER STUDY

S. No.	Author		Title of Books	Publishers		
1	CIMI- Cen	tral	Turner – Trade Theory – Ist and	Wiley Eastern Ltd.		
	Instructional Media		IInd Year	New Delhi		
	Institute Madras					

(GC106) Basic Engineering Practice (Mech & Elect.) 2. COURSE OBJECTIVE:

The students will be able to acquire knowledge about safety aspects, firefighting, first-aid and carpentry, fitting, plumbing skills. The students will learn proper ways of using various hand tools, measuring devices in acquiring these skills and will also interpret simple electrical drawings/circuit diagrams.

2. TEACHING AND EXAMINATION SCHEME

Course	Periods/			Total		Exan	nination S	cheme	
Code & Course Title	Week (In Hours)		Hours	Theory Marks		Practical Marks		Total Marks	
(GC 106)	L	Т	Р	Н	TH	TM	PR/OR	TW	
Basic									
Engineering	0	0	5	80	-	-	50	75	125
Practice									

3. COURSE OUTCOMES:

PART A

On successful completion of the course, the student will be able to: GC106.CO1. Understand safety procedures to be followed in carpentry, fitting, and plumbing. GC106.CO2. Identify various tools used for carpentry, fitting, and plumbing. GC106.CO3: Demonstrate basic working skills in carpentry, fitting and plumbing.

GC106.CO4: Plan & execute a job/activity using job drawing.

PART B

On successful completion of the course, the student will be able to:

GC106.CO1. List the safety measures.to be observed in electrical workshop.

GC106.CO2. Identify various electrical tools, fittings used for electrical measurements & troubleshooting. GC106.CO3: Distinguish between single phase and three phase supply.

GC106.CO4: Plan & execute a job/activity from electrical circuit drawing.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

PART A

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	2	1	1	3	2	2	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-3

PART B

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	3	1	1	2	2	1	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-

M = Marks Hr = Practical Hours CO = Course Outcomes		1	
Unit	Μ	Hr	CO
1 General Safety, Housekeeping, Fire Fighting & First Aid		06	
1.1 Introduction to General Safety aspects of engineering workshop			CO1
1.2 Meaning and importance of housekeeping.			
1.3 Fire hazards, fire triangle, types of fire extinguishers – selection			
and use.			
1.4Basic knowledge of first aid with specific inputs on cuts, burns,			
electric shocks, artificial respiration, handling emergencies.			
2 Fitting Workshop Practice		18	
2.7 Introduction to the trade.			CO1
2.8 Introduction to various hand Tools, Measuring and Marking			CO2
Tools, cutting tools, Holding tools, Striking tools			CO3
2.9 Types of files and filing methods.			
2.10 Drill bits and drilling Processes, using portable and pillar			
drilling machine.			
2.11 Operations performed in fitting shop such as measuring,			
marking, chipping, filing, grinding, sawing, drilling			
2.12 Threading using taps and dies.			
3 Carpentry Workshop Practice	20	18	
3.10 Introduction to carpentry			CO1
3.11Types of wood and its characteristics, forms of wood, defects in			CO2
timber and its identification, wood working hand tools			CO3
3.12 Wood working processes.			
3.13 Different types of joints and their usage.			
3.14 Introduction to wood working machines:			
a. Latheb. Circular saw			
b. Circular sawc. Band saw			
d. Wood planner			
e. Universal wood working machine			
4 Electrical Workshop Practice	30	32	
4.1 Brief introduction to power distribution and Electrical Safety.	50	52	CO1
4.2 Use of different hand tools used in electrical trade			CO2
4.3 Collection of details of motors and transformers.			CO3
4.4 Introduction to Control Panel and its various			CO4
sections/components.			
4.5 Making of wire joints.			
4.6Measurement of current, voltage, frequency and Power			
Consumption.			
4.7 Connecting and starting of Induction Motor & Measurement of			
its speed. Changing of Direction of rotation of induction motor.			
4.8 Introduction to commonly used electrical Fittings (Domestic &			
Industrial).			
4.9Wiring of Simple Electric Circuit (Bulb & plug point and			

switches) on wooden board		
4.10 Study, connection & use of Energy Meter		
4.11Testing of components using Series test lamp & Multimeter		
4.12Study of Fuses & practice replacement of Fuse		
4.13 Study & Troubleshooting of Tube Light		
5 Plumbing	06	
5.1 Plumbing tools, pipe fittings and method of joining pvc pipes.		CO1
5.2 Use of spirit level and plumb bob.		CO2
5.3 Minor repairs and replacement of fittings.		CO3
5.4 Reading of plumbing drawings.		
[Note: Plumbing restricted to domestic plumbing and pvc piping.]		
Total	80	

The Course will be delivered through workshop practical sessions in mechanical and electrical workshops.

7. SPE	CIFICATION TABLE FOR PRACTICALS/ MACRO-LES	SON PLAN	
Unit	Unit	Number	Ms

Unit No	Unit	Number of hrs.	Marks
1	General Safety, Housekeeping, Fire Fighting & First Aid		10
2	Fitting Workshop Practice		30
3	Carpentry Workshop Practice		20
4	Electrical Workshop Practice		30
5	Plumbing		10
	Total		100

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Hrs.
1	General Safety, Housekeeping, Fire Fighting & First Aid	06
а	Demonstration on use of Safety Measures while working in Workshop and	03
	use of safety signs.	
b	Demonstration on use of First Aid and Artificial Respiration procedure	03
	,Training on fire and emergency services (using video presentation /fire and	
	safety expert talk)	
2	Fitting Workshop Practice	18
а	Identification of various hand Tools, Measuring and Marking Tools,	03
	cutting tools, Holding tools, Striking tools	
b	Identification of various types of files and demonstration on filing methods.	03
с	Identification of various types of Drill bits, taps, dies and Drilling machines	03
	such as portable and Pillar Drilling machine.	
d	Job involving filing, marking, cutting operation on MS Flat.	06
e	Job involving Drilling and Tapping operation on MS flat.	03
3	Carpentry Workshop Practice	18

а	Identification of various types of woods and wood working hand tools	03
b	Identification of various types of Carpentry joints and their usage.	03
с	Introduction to wood working machines such as wood working Lathe,	03
	Circular saw ,Band saw, Wood planner, Universal wood working machine	
d	Job involving marking, measuring, planning, sawing, chiseling, joint	06
	preparation and assembly of wooden blocks.	
e	Preparation of job on wood working lathe.	03
4	Electrical Workshop Practice	32
a	Measurement of Single Phase and Three Phase supply Voltage using	02
	multimeter.	
b	Identification of various hand tools used in electrical trade.	02
с	Measurement of electric circuit parameters using Ammeter, Voltmeter,	04
	Frequency meter, Wattmeter.	
d	Making of Straight and T wire joints.	02
e	Testing of electrical components such as Choke, starter, Fuse, Switch using	02
	Series Test lamp and Multimeter	
f	Starting of induction motor using DOL Starter	02
g	Reversal of direction of rotation of Three phase induction motor	02
h	Identification of commonly used electrical fittings.	02
i	Wiring of simple electrical circuit using bulb and socket.	04
j	Measurement of Energy using Energy Meter.	02
k	Identification of Different types of Fuses and their replacement in circuit.	02
1	Testing of various components and connection of Tube light circuit.	02
m	Collecting Name plate Details of Motors and Transformers and operating	04
	and controlling speed of motor from Control panel.	
5	Plumbing	06
а	Identification of Plumbing tools and pipe fittings, Reading of plumbing	03
	drawings, methods of joining PVC pipes, use of spirit level and plumb bob	
	in piping.	
b	To carry out minor repairs and replacement of fittings.	03

9. LEARNING RESOURCES TEXT BOOKS

S.	Author	Title of Books	Publishers						
No.									
1	N. Sesha Prakash	Manual of Fire Safety	CBS Publishers and Distributers						
2	S.K. Hajara- Chaudhary	Workshop Technology	Media Promoters						
3	B.S. Raghuwanshi	Workshop Technology-	Dhanpat Rai and sons, New Delhi						
4	R K Jain-	Production Technology	Khanna Publishers, New Delhi						
5	H. S .Bawa	Workshop Technology	Tata McGraw Hill Publishers, New Delhi						
6	Kent	Mechanical Engineering Hand book	John Wiley and Sons, New York						
7	B.L. Theraja	Fundamentals of Electrical Engineering and Electronics	S. Chand – New Delhi						

REFERENCE BOOKS FOR FURTHER STUDY

S. No.	Author	Title of Books	Publishers
1	CIMI- Central	Turner – Trade Theory – Ist and	Wiley Eastern Ltd.
	Instructional Media	IInd Year	New Delhi
	Institute Madras		

(GC201) ENGINEERING MATHEMATICS II

1. COURSE OBJECTIVE:

2. The course is aimed at providing mathematical knowledge, developing computational skills and reasoning. It also helps students to think logically and in systematic manner so as to grasp mathematical concepts easily. It helps to build analytical thinking which play an important role in solving real world problems in all scientific discipline.

2. TE	ACHING	AND	EXAMINA	TION	SCHEME

Semester	II									
Course cod	e &	Perio	ds/We	eek	Total	Exami	nation	Scheme	;	
course title		(in ho	ours)		hours	Theory Marks		TERM WORK		Total Marks
(GC201)		L	T	Р	Н	TH	TM	TW	PR/OR	
Engineering Mathematic	_	4	2	-	96	75	25	25	-	125

3.COURSE OUTCOMES:

GC201.CO1: Understand the basic principles of Matrices ,Integration, Determinants and Vectors in engineering problems.

GC201.CO2: Interpret the formulae to solve problems of Matrices ,Integration, Determinants and Vectors.

GC201.CO3: Apply appropriate mathematical methods for solving engineering problems.

GC201.CO4: Analyse the knowledge of Matrices ,Integration, Determinants and Vectors

for various Engineering applications.

4. Mapping Course Outcomes with Program Outcomes

DO 1						
PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
3	1	1	2	0	2	2
3	1	1	2	0	2	2
2	2	2	3	1	2	2
1	3	2	3	1	2	2
_	3 3 2 1	3 1 3 1 2 2 1 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Relationship : Low-1 Medium-2 High-3

M = Marks	Thr = Teaching hours	CO = Course Objectives			
Unit			Ma rks	Th r	СО
1 .DETERM	INANTS AND MATRIC	ΈS	15	12	CO1,
determinant,		der of determinant, value of s(no question), Cramer's rule variables	7	4	- CO2, CO4
Equa of ma	lity of matrices, addition &	of matrix, types of matrices, x subtraction, multiplication of a matrix, solution of linear ables using matrices	8	8	
2.INTEGRA	ATION		20	22	CO1, CO2,
Definition, Standard Formulae, properties of Integration for sum, difference and scalar multiplication, integration of algebraic, trigonometric, inverse trigonometric, exponential, logarithmic, composite function, Integration by substitution, integration by partial fraction, integration by parts					CO4
3 .DEFINITE INTEGRALS				08	CO3
,integration b Applications:	• 1	erties of definite integral			
4.VECTOR	S		15	12	C01,
Addition & addition, posproperties an	sition vector, dot product	angle, parallelogram laws for & cross product and their tween dot and cross product			- CO2, CO4
5.STATIST	ICS / COMPLEX NUMB	BERS	15	10	CO3
5.1:Measures ungrouped & 5.2:Measures deviation, van	grouped data of dispersion –Range, riance, coefficient of variat	-mean, median, mode for mean deviation, standard			

mean.			
5.Complex Numbers (electronics and Allied courses only)			CO3
5.1:Definition of complex number and Argand diagram, equality of			
complex numbers,			
5.2:powers of 'i' ,complex conjugates,			
5.3:Addition& subtraction of complex nos. Multiplication& division			
of complex nos.			
5.4: Modulus and argument of a complex number			
5.5:Polar form & exponential form of complex no.			
5.6: De Moivre's theorem., nth root of complex nos.			
5.7:Hyperbolic, exponential, circular functions			
Total	75	64	
Total	75	64	

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY (GC201)

Unit No	Unit	Number of lectures	Marks
1	Determinants & Matrices	12	15
2	Integration	22	20
3	Definite Integrals	08	10
4	Vectors	12	15
5	Statistics /Complex Number	10	15
	Total	64	75

- Tutorial books should be maintained by students (5 marks)
- Two home assignments per semester (5 marks)

The Two assignments each comprises of thirty questions which includes 15 short questions and fifteen long questions. First assignment will cover fifty percent of syllabus

and second assignment will cover remaining portion of syllabus

• Topic-wise class assignment (15 marks)

Class assignment comprises of ten short and ten long questions.

9. LEARNING RESOURCES	
Text Books /reference books	

ICAU	Text Dooks /Telefence books								
S. No.	Title of Books	Author	Publishers						
1	Mathematics for Polytechnic Students(Basic Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune						
2	Mathematics for Polytechnic Students(Engineering Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune						
3	Applied Mathematics	S.B. Gore, M.B.Patil, S.P. Pawar	Vrinda Publications						

Reference Books for further study

S. No.	Title of Books	Author	Publishers
1	Applied Mathematics I	Dr. U.B.Jangam, K.P. Patil, Nalini	Nandu Printers& Publishers Pvt. Ltd.
		Kumthekar	Mumbai
2	Applied Mathematics for Polytechnics	H.K. Dass	CBS Publishers & Distributers Pvt. Ltd. Pune
3	Advanced Engineering mathematics	H.K. Dass	S. Chand

(GC 202) APPLIED PHYSICS- II

1. COURSE OBJECTIVE:

On successful completion of the course, Students completing the Applied Physics II course will be able to demonstrate competency and understanding of the basic concepts found in, Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light and Optics and Sound, and will be able to utilize the knowledge to demonstrate competency with experimental methods that are used to discover and verify the concepts related to content knowledge.

Semester	II									
Course code &	&	Per	iods/\	Neek	Total	Examination Scheme				
course title		(i	n hou	rs)	Hours	Theory Practical		nctical	Total	
					Marks		Marks		Marks	
(GC202) Appli	ied	L	Т	Р	Н	TH	TM	TW	PR/OR	
Physics- II		03	0	02	80	75	25	25	-	125

2.TEACHING AND EXAMINATION SCHEME

3. COURSE OUTCOMES:

GC202.CO1: Understand the Fundamental Concepts of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound.

GC202.CO2: Explain the basic principles of Electrostatics, Current Electricity, Electromagnetism and Electro Magnetic Induction, Light, Optics and sound.

GC202.CO3: Apply the knowledge of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound to specific applications.

GC202.CO4: Compute various parameters in the field of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound.

4. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability& Environment	Project Management	Life -long Learning
CO 1	3	3	1	1	2	0	3
CO 2	3	3	1	1	2	0	2
CO 3	3	2	3	3	3	1	1
CO 4	2	2	2	3	1	1	1
M = Marks Thr = Teaching hours CO = Course Objectives							
--	----	----	------------				
Unit	Μ	Th	CO				
		r					
1 UNIT NAME: ELECTROSTATICS	12	8	CO1,				
1.1 Coulomb's law, Electric field,			CO2,				
1.2 Electric field Intensity, Electric lines of force and properties			CO3,				
1.3 Electric potential, Definition of Absolute potential			CO4				
1.4, Potential difference, Potential of sphere,							
1.5 Potential of earth.							
1.6 Capacitance,							
1.7 Capacitors in Parallel Derivation of Expression							
1.8. Capacitor in series Derivation Of Expression							
2. UNIT NAME: CURRENT ELECTRICITY	20	12	CO1,				
			CO2,				
2.1 Definition of Electric Current and its Unit, Ohm's Law, Resistance,			CO3,				
2.2 Factors on which resistance depends, Specific resistance. Effect of			CO4				
temperature on resistance							
Temperature coefficient of resistance,							
2.3 Resistances in Series and parallel							
2.4 EMF and Internal resistance of cell							
2.5 General Equation of ohm's law.							
2.6. Wheatstone's Network and Principle of Meter Bridge							
2.7 Principle of Potentiometer (V α L) and Applications to compare EMF of							
given cells by single cell method and sum difference method							
2.8 Determination of Internal resistance of a cell using potentiometer.							
2.9 Electric Power and Electric Energy, KWh							
2.10 Calculation of Energy bills							
2.11 Heating Effect of Electric current. Joule's law.							
2.12 Applications in house hold appliances							
3. UNIT NAME: ELECTROMAGNETISM AND EM INDUCTION	16	10	CO1,				
3.1 Magnet, Magnetic field, Magnetic flux, and magnetic flux density and			CO2,				
its unit			CO3,				
3.2 Magnetic effect of Current, Oersted's Experiment, Right hand Thumb			CO4				
Rule, Biot Savart law							
3.3 Magnetic field at the center of the coil (no derivation), Magnetic field							
due to coil (Qualitative discussion only							
3.4 Electromagnet. Force acting on a current carrying conductor placed in							
magnetic field and expression (no derivation)							
3.5 Fleming's left-hand rule. Electromagnetic Induction. Faraday's							
Experiment							
3.6. Faraday's laws Lenz's law. Self-Induction and Mutual Induction.							
3.7 Transformer Principle.							
3.8 Step up and Step-down transformer.							
3.9 Induction Heating							
3.10 Induction heater and uses							

4. UNIT NAME: LIGHT AND OPTICS	16	10	CO1,
4.1 Frequency Range of Infrared, ultraviolet and visible light and their uses			CO2,
4.2 Reflection, Refraction, Snell's law, refractive index.			CO3,
4.3 Refraction through glass slab and prism.			CO4
4.4 Total Internal reflection applications in optical fibers.			
4.5 Advantages of optical fibers. LASER, sources and applications.			
4.6. Luminous Intensity, Intensity of Illumination			
4.7 Inverse square law of Illumination (No derivation)			
4.8 Principle of Photometry, X rays,			
4.9 Production of X Rays by Coolidge tube			
4.10 Properties and applications			
5. UNIT NAME: SOUND	11	08	CO1,
5.1 Sound as longitudinal wave, wavelength, frequency, time period,			CO2,
amplitude,			CO3,
5.2 Free vibration force vibration, resonance, examples,			CO4
5.3 Echo reverberation ,pitch loudeness,intensity of sound,			
5.4 Ultrasonic waves, Piezo electric effect, Principle of Production of ultra-			
sonics waves			
5.5 Application of Ultra sonics in finding depth of sea,			
5.6. Detection of flaws in metal, soldering, Drilling,			
5.7 Ultrasonic Cleaning			

The Course will be delivered through lectures, class room interactions, exercises and case studies 7 SPECIFICATION TABLE FOR THEORY/MACRO-LESSON PLAN

Unit No	Unit		Marks
1	ELECTROSTATICS	lectures 8	12
2	CURRENT ELECTRICITY	12	20
3	ELECTROMAGNETISM AND EM INDUCTION	10	16
4	LIGHT AND OPTICS	10	16
5	SOUND	8	11
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS

No	Practicals	Marks
1.	Specific Resistance by Ammeter Voltmeter Method	25
2	Specific Resistance by Meter Bridge Method	25
3	To Verify the Series Law of Resistance by Meter Bridge Method	25
4	To Verify the Parallel Law of Resistance by Meter Bridge	25
	Method	
5	To Compare the emf of two cells by single cell method	25
6	To find the internal resistance of a cell by Potentiometer Method	25
7	To find the velocity of sound by Resonance Tube method	25
8	To find the Refractive index	25
	Total (Average)	25

9. LEARNING RESOURCES

Text Books

TCAT DO			
S. No.	Author	Title of Books	Publishers
1	B G Dhande	Applied Physics of Polytechnics	Pune Vidyarthi Griha
			Prakashan
2	Bhandarkar	Applied Physics of Polytechnics	Vrinda publication
3	R K Gaur and S L	Engineering Physics	Dhanpat Rai & Sons
	Gupta		Delhi
4	Dr. Vasudev R	A Text Book of Applied Physics for	Broadway Publishing
	Bhagwat	Polytechnics	House
5	B L Thereja	Engineering Technology	S. Chand
Referen	ce Books for further st	udy	
S. No.	Author	Title of Books	Publishers
1	Halliday D and	Physics Part I-II	Wiley Eastern Ltd.
	Resnick		
2	Satish k. Gupta	ABC of Physics I&II	Modern Publisher
3	Saxena HC and	Applied Physics Vol I & II	S. Chand Publisher
	Singh Prabhakar		

(GC203) ENVIRONMENTAL STUDIES

1. COURSE OBJECTIVE:

Environment is the nurturing force upon which we depend. It decides our well being, our health & quality of our life. The environment is deteriorating at an alarming rate due to increasing human activity and can be saved only by timely human action. The aim of Environmental studies is to sensitize the students towards the need to conserve & protect natural resources & biological support systems. With the aim to develop an attitude of concern for the environment the students will learn to choose environmentally friendly options for sustainable development and live in harmony with nature.

2. TEACHING AND EXAMINATION SCHEME :

Semester	Ι									
Course code course title		-	iods/W n hour		Total Credits	Examination Scheme				
		(1				Theory Marks Practical Marks				Total Marks
(GC203) Environment	ta l	L	Т	Р	Н	ТН	TM	TW PR/OR		
Studies		04	-	-	64	75	25	-	-	100

3. COURSE OUTCOMES:

GC203.CO1: Understand the role and importance of various elements of Environment.

GC203.CO2: Identify the concerns related to the natural resources, ecosystems, biodiversity, pollution and social issues of environment.

GC203.CO3: Develop sensitivity towards Environmental issues.

GC203.CO4: Co-relate causes affecting the environment & biodiversity.

4. Mapping Course Outcomes with Program Outcomes :

+ mapping course outcomes with rogram outcomes .										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7			
	Basic & Discipline Specific	roble naly	Design and Devlopmen t of	Engg. Tools, Experiment	Engg. Practices for Society,Sus tainability	Project Manageme nt	Life -long Learning			
CO1	2	1	1	0	3	2	2			
CO2	2	1	1	0	3	2	2			
CO3	1	1	1	0	3	2	2			
CO4	1	1	2	0	3	2	2			

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Mk	Thr	CO1,
	S		CO3,
UNIT 1.0 : Multidisciplinary Nature of Environmental Studies	09	08	CO4
1.1 Environmental studies : Definition , Scope and Importance			

1.2 Need for Public Awareness			
1.3 Environment & Human Health			_
1.4 Environmental Ethics			_
1.5 Value Education			_
			_
1.6 From Unsustainable to Sustainable Development : Concept and			
Guidelines		-	_
1.7 Concept of Environmental Audit (EA)			
Environment Impact Assessment (EIA)			_
1.8 Ecological Foot Prints			
UNIT 2.0: ECOSYSTEM AND BIODIVERSITY	15	13	CO1, CO2,
2.1 Ecosystem			CO2, CO3,
2.1.1Concept, Structure & functions of ecosystem			CO3, CO4
			0.04
(Function of producer, consumer and decomposer)			
2.1.2 Food chain & Food web- Concept & Examples			
2.1.3 Energy flow in Ecosystem			
2.1.4 Ecological Pyramids (Inverted & Upright)			
Pyramid of Number, Biomass & Energy.			
2.1.5 Ecological Succession (Primary & Secondary Succession)			
2.1.6 Study of Ecosystem: characteristic features structure and functions)			
Terrestrial(Forest, Grassland, Desert) Aquatic(Pond, River & Ocean)			
2.2 Biodiversity			-
2.2.1 Definition of Biodiversity			
2.2.2. Types of Diversity (Genetic, Species & Ecosystem)			
2.2.3. Value of Biodiversity (Consumptive, Productive, Social ,Aesthetic			
Moral & Optional value)			
2.2.4 India as a Mega- diversity Nation			
2.2.5 Biogeographical classification of India			
2.2.6 Extinct, Endangered, Threatened & Endemic Species -Examples (of			
India)			
2.2.7 Threats to Biodiversity (Habitat loss, Poaching of Wild life & Man			
Wildlife Conflict)			
2.2.8 Reasons for loss of Biodiversity			
2.2.9 Conservation of Biodiversity (Insitu & Exsitu conservation)			
2.2.9 Conservation of Diodiversity (Insite & Exsite conservation)			
UNIT 3.0 : NATURAL RESOURCES	18	15	CO1,
3.1 Forest Resource			CO2,
3.1.1 Direct & Indirect value of Forest			CO3,
3.1.2 Deforestation-causes & effects			CO4
3.1.3 Forest Management			
3 2 Water Basewree			
3.2 <u>Water Resource</u> 3.2.1 Water as a scarce Resourc			
3.2.2Use and over exploitation of surface and ground water			
3.2.3 Need for Water Conservation			

			<u> </u>
3.2.4 Construction of dams- Benefits and draw backs			
(Rehabilitation & Resettlement of people)			
3.2.5 Rain water Harvesting.			
3.2.6 Watershed Management			
3.2.7 Conflicts over water in India			
3.3 Energy Resource			
3.3.1 Renewable & Non-Renewable sources of Energy			
3.3.2 Growing Energy Needs.			
3.3.3 Alternate Source of Energy (Solar ,Wind, Bio, Geothermal,			
Hydro & Nuclear Energy)			
3.4 Food Resource			
3.4.1 Sources of Food			
3.4.2 World Food Problems (Undernourishment & Malnourishment)			
3.4.3 Changes caused by agriculture & overgrazing			
3.4.5 Effects of modern agriculture on environment			
(use of synthetic fertilizers & synthetic pesticides in agriculture)			
3.5 Mineral Resource			
3.5.1 Types of Minerals			
3.5.2 Use & Overexploitation of Minerals			
3.5.2 Environmental Impact of Mining.			
5.5.5 Environmental impact of winning.			
3.6 Land Resource			
3.6.1 Pattern of Land Utilization (In India and World)			
3.6.2 Land Degradation – Causes & Control Measures			
UNIT 4.0 : ENVIRONMENTAL POLLUTION- Sources, Effects &	24	20	
Control Measures			001
4.1 <u>Air Pollution</u>			CO1,
4.1.1 Definition, sources of air pollution(Primary and Secondary air			CO2,
pollutants with examples)			CO3,
4.1.2 Effects on human health, animals, plants & Materials			CO4
4.1.3 Control of Air Pollution.			
4.1.4 Removal of Particulate matter			
4.1.5 Principles & Application of Control Equipments			
(Gravity and Inertial Separators, Cyclones, Filters, Electrostatic			
precipitators, Wet scrubbers)			
4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption,			
Absorption)			
4.1.7 Global Issues Definition, Cause & effects of Green House effect			
& Global Warming. Ozone layer Depletion, Acid Rain.			
4.6 <u>Noise Pollution :-</u>			

SHIPBUILDING ENGINEEERING CURRICULUM

 4.6.1 Definition. 4.6.2 Sources of Noise Pollution 4.6.3 Effects of Noise Pollution on Human health (Noise Induced hearing loss, Physiological & Psychological Effects) 4.6.4 Control of Noise Pollution. 4.7. Nuclear Pollution / Radioactive Pollution:- 4.7.1 Definition 4.7.2. Sources of nuclear Pollution (Natural & Man made) 4.7.3. Effects of Nuclear Pollution 4.7.4. Control of Nuclear Pollution 4.7.5. Disposal of Nuclear waste (Low, Medium & High activity waste) 			
 4.7.6 Nuclear Accidents & Holocaust – case study 4.8 Solid Waste Pollution. Definition: Refuse, Garbage Sources of Solid waste Types of solid waste (MSW, HW, BMW & EW) Effects of Consumerism Segregation of Solid waste at source Treatment of MSW (Open dumping, Land filling, incineration & composting) 			-
 Composing) Waste Utilization (Reuse, Reclaim & Recycle) Solid waste Management System – Flow sheet diagram 4.9 Role of an Individual in Prevention of Pollution. UNIT 5.0 : SOCIAL ISSUES & ENVIRONMENT 5.1 Environmental Legislation 	09	08	CO2, CO3, CO4
 Article 47 & Article 51-A(g)of the constitution on Environment. 5.1.1 Protection Functions of Ministry of Environment and Forest Govt. of India Objectives & Functions of Central & state pollution Control Boards Environmental Protection Act. Air (Prevention & Control of Pollution) Act. Water (Preventation & Control of Pollution) Act. Wildlife Protection Act. 			
 Forest Conservation Act. Motor vehicle Act. 5.2 Social Issues 5.2.1Women & Child Welfare 5.2.2 Role of IT in Environment & Human Health 5.2.3 AIDS 5.2.4 Population Growth & Variation among Nations 5.2.5 Human Rights 			-

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	MULTI-DISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES	08	09
2	ECOSYSTEM AND BIODIVERSITY	13	15
3	NATURAL RESOURCES	15	18
4	ENVIRONMENTAL POLLUTION	20	24
5	SOCIAL ISSUES & ENVIRONMENT	08	09
	Total	64	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS 9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Erach Bharucha	Textbook of Environmental Studies	Universities Press
			(India) Private Ltd.
2	Dr. Suresh K.	Environmental studies	S.K. Kataria & Sons
	Dhameja		
3	Y. Anjaneyulu	Introduction to Environmental	B.S Publications
		Science	
4	S. Deswal & A.	A Basic Cource in Environmental	Dhanpat Rai & Co.
	Deswal	Studies	
5	P. Meenakshi	Elements of Environmental Science	Prentice Hall of India
		and Engineering	(PHI)

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Pandya and Camy	Environmental Engineering	Tata McGraw Hill
2	Asthana D.K. and	Environmental Problems and	S. Chand & Co.
	Asthana Meera	Solutions	
3	Gilbert M. Masters	Introduction to Environmental	Prentice Hall of India
		Engineering and Science.	(PHI)
4.	M N Rao & HVN	Air Pollution	Tata McGraw Hill
	Rao		

FIELD ACTIVITIES (OPTIONAL)

1. Visit to Selaulim/ Anjunem Dam.

2. Visit to show Hill cuttings, mining areas.

3. Visit to show Rain water harvesting project / Vermicomposting plant / watershed management project. (Krishi Vigyan Kendra – Old Goa)

4. Visit to Garbage treatment plant.

*On Completion of visit Report to be submitted.

GC204) ENGINEERING DRAWING

1. Course Objective: Drawing is a graphical language of engineering field. Engineering technician irrespective of his/her field of operation in an industry is expected to possess a thorough understanding of drawing, which includes visualization of objects and the proficiency in reading and interpreting a wide variety of engineering drawings. It is the skill, which translates an engineering idea into lines and dimensions. Besides this he/she is also expected to possess a certain degree of drafting skills- depending upon his/her job.

2. TEACHING AND EXAMINATION SCHEME:

Course Code &	Periods/ Week (In Hours)		Total		Exar	nination S	cheme		
Course Title			Theory Marks		Practical Marks		Total Marks		
(GC204)	L	Т	Р	Н	ТН	ТМ	TW	PR/OR	
Engineering Drawing	-	-	5	80	-	-	50	50	100

3. Course Outcomes:

On successful completion of the course the student will be able to:

GC204.CO1: Understand different methods of projection, sectioning of solids and development of surfaces.

GC204.CO2: Select the relevant procedural methods for preparing Engineering Drawing.

GC204.CO3: Draw Isometric views and orthographic projection of full and sectioned objects and development of surfaces

GC204.CO4: Examine and Interpret Engineering Drawings

3. Mapping Course Outcomes with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	Basic and discipline specific knowledge	Problem analysis	Design & developm ent of solution	Engg tools exptn and & testing	Engg Practice for society,susta inability and environment	Project manage ment	Lifelong learning
CO1	3	2	1	3	1	1	1
CO2	3	1	2	3	1	2	2
CO3	2	2	2	3	1	2	2
CO4	2	2	2	2	1	2	3

Relationship- 1:Slight (low) 2:Moderate(Medium) 3: Substantial(High)

5. Detailed course Contents/ Micro lesson plan

M=Marks

Prhr= Teaching Hrs

CO=Course Outcomes

Unit	Mark	Prhr	CO
 Introduction 1.1 Importance of engineering drawing as a means of communication. 1.2 Planning of drawing sheet as per SP 46(latest revision) 1.3 Indian standard practices of laying out and folding of drawing 1.4 Different types of lines used in engineering drawing. 1.5 Importance of scale in Engineering Drawings. 1.6 Lettering 1.7 Methods of dimensioning, Dimensioning terms and notation -use of SP 46(latest revision), General rules for dimensioning, Dimensioning of cylinder, holes, arcs of circle, narrow space, angles, countersunk hole, taper. 	05	05	CO2
2. Geometrical construction & Engineering Curves	05	15	CO2
 2.1Construction of an Equilateral and Isosceles triangle, Square, Regular pentagon & Regular hexagon given length of a side using general method of construction 2.2Construction of Engineering curves like: 			
2.2Construction of Engineering curves like:			
Ellipse- by focus & directrix method and arcs of circles method Parabola- by focus & directrix method and rectangle method			
Hyperbola- Focus and directrix method			
2.3 Cycloid- by generating circle rolling on a straight line			
2.4 Involutes of a circle.			
2.5 Draw normal & tangents to the above curves from given point on the curve			
Curves to be explained with the help of applications.			
3. Orthographic projection	18	30	CO1,
3.1 Definitions of various terms associated with orthographic projections. Planes of projections. Concept of Quadrants.3.2 First and third angle method of projection.			CO2, CO3, CO4

2.2 Designation of mainte			
3.3 Projection of points			
3.4Projection of lines			
Parallel to both Principal planes			
Parallel to one and Perpendicular to other Principal plane.			
Inclined to one plane and parallel to other plane.			
3.5 Projection of planes: Triangle, Square, circle when inclined to one principal plane & perpendicular to other plane.3.6 Projection of solids: Cylinder, cone.			
Right regular solids such as			
 (i) Prism: Square& Pentagonal (ii) Pyramid: Triangular & Square. Projections of above mentioned solids when axis is inclined to one principal plane & Parallel to other principal plane. 			
3.7 Conversion of simple pictorial views into orthographic views.			
Problems where one end of the line is in one quadrant & other end in other quadrant and traces are to be excluded.			
Problems where apparent shape of plane are given, true shape & slope angle are to be drawn are excluded.			
4. Section of solids Development of lateral surfaces	10	15	CO1,
4.1 Concept of sectioning planes, Auxiliary planes and true shape of section.			CO3
4.2 Drawing section of solids like square prism, square pyramid, cylinder and cone with sectioning plane inclined to one principal plane and Perpendicular to the other principal plane (Axis of solid perpendicular to one principal plane and parallel to the other)			
4.3Concept and importance of surface development in the engineering field. Methods of development of surfaces-Radial & Parallel line method. Development of surfaces for solids like square prism, square pyramid, cylinder and cone.			
Development of solids standing on its base & cut by a plane inclined to HP and perpendicular to VP is also included.			

5. Isometric Views	12	15	CO3,
5.1Difference between Isometric projection & Isometric view.			CO4
5.2Isometric view of geometrical planes and solids.			
5.3Conversion of orthographic views into isometric views.			
5.4Construction of Isometric view for any real object.			
Total	50	80	

6. Course Delivery:

The course will be delivered through Practicals, class room interaction and exercises.

7. Specification table for Practical/Macro Lesson Plan

Unit No.	Unit	No. Of Practical Hrs.	Marks
1	Introduction	05	05
2	Geometrical construction & Engineering Curves	15	05
3	Orthographic projection	30	18
4	Section of solids Development of lateral surfaces	15	10
5	Isometric Views	15	12
	Total	80	50

8. Specification table for Practical/ Termwork:

No.	Practical
1	TYPES OF LINES, LETTERING, DIMENSIONING.
2	GEOMETRICAL CONSTRUCTIONS
3	ENGINEERING CURVES
4	PROJECTION OF POINTS & LINES
5	PROJECTION OF PLANES
6	PROJECTIONS OF SOLIDS
7	ORTHOGRAPHIC PROJECTIONS (First angle)
8	ORTHOGRAPHIC PROJECTIONS(Third angle)
9	SECTIONS AND DEVELOPMENT OF SOLIDS
10	ISOMETRIC VIEWS

9. Learning Resources:

Text Books

S.No.	Author	Title	Publisher
1	N.D. Bhatt	Engineering Drawing	Charoter Publisher, Anand
2.	R. K. Dhawan	Engineering Drawing	S. Chand Publishing
3.	K.R. Gopalakrishna	Engineering Drawing	Subhas Publications.

Reference Books only for further study

S.No.	Author	Title	Publisher
1	P.S. Gill	Geometrical Drawing	Kataria & Sons
2	P.S. Gill	Machine Drawing	Kataria & Sons
3	N.D. Bhatt	Machine Drawing	Charoter Publisher, Anand

Indian and International codes needed

S.No.	Author	Title	Publisher
1.	BIS, India	SP 46. (Latest revision).	BIS, India

(GC205) ENGINEERING MATERIALS

1. COURSE OBJECTIVE:

This course is introduced with an objective of providing knowledge to students regarding properties and composition of materials for engineering applications and enabling them to make comparative study of materials while selecting the appropriate material for various engineering applications.

2. TEACHING AND EXAMINATION SCHEME

Semester	II											
Course co	Course code &		riods/	Week	Total	Examination Scheme						
course t	course title		(in hours)		Hours	Theory		Practical		Total		
						Marks		Marks Mark		Marks		Marks
				-								
(GC20	5)	L	Т	Р	Н	TH	TM	TW	PR/OR			
ENGINEE	RING	3			48	75	25			100		
MATER	IALS											

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

GC205.CO1: List out the properties of materials used in engineering applications.

GC205.CO2: Explain the composition and properties of various engineering materials.

GC205.CO3: Classify materials based on composition and properties.

GC205.CO4: Select the appropriate material/s for the given engineering application/s.

4. Mapping Course Outcomes with Program Outcomes

in mapping course outcomes with i regram outcomes										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7			
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability & Environment	Project Management	Life -long Learning			
CO1	3	2	0	0	0	0	1			
CO2	3	2	1	0	0	0	1			
CO3	2	2	2	1	1	0	1			
CO4	2	3	3	2	1	0	1			

Relationship : Low-1 Medium-2 High-3

M = Marks	Thr = Teaching hours	CO = Course Objectives			
	Μ	Thr	CO		
1 INTRODUC	08	04			
1.1 Classificatio	on of Materials: Metal and	Non-metal, Ferrous Metal & Non-			CO1,
ferrous Metals, l	Differences between Metal	s & Non-metals			CO2,
1.2 Properties of	of Materials:(Note: Proper	ties to be explained with relevant			СОЗ,

examples.) 1.2.1 Physical properties – Melting point, Freezing point, Boiling point, Density, Linear co-efficient of expansion, Thermal conductivity, Electrical resistivity 1.2.2 Mechanical properties – Strength, Elasticity, Plasticity, Ductility, Malleability, Toughness, Brittleness, Hardness, Fatigue, Creep. 1.2.3 Electrical properties – Resistivity, Conductivity, Temperature coefficient of resistance, Dielectric strength, Thermo-electricity, Super conductivity 1.2.4 Magnetic properties – Permeability and Coercive force			CO4
1.2.5 Chemical properties - Corrosion resistance and Chemical composition	-		
2 FERROUS & NON-FERROUS METALS & ITS ALLOYS	18	12	
2.1 FERROUS ALLOYS:			CO1,
 1.1.1 Low carbon steel, Medium carbon steel, High carbon steel, their carbon percentage, properties & uses. 1.1.2 Cast iron: grey cast iron, white cast iron, their properties & uses 1.1.3 Alloy steels: Constituents of alloy steels such as Phosphorous, Sulphur, Silicon, Manganese and their effect on properties of 			CO2, CO3, CO4
 materials. 1.1.4 Stainless steel, Nickel-chromium-molybdenum steel, its properties & uses. 1.1.5 Tool steel – composition, HSS, properties & uses 			
2.2 NON-FERROUS METALS & ALLOYS:			CO1,
 2.2.1 Aluminium – Properties & uses 2.2.2 Aluminium alloys – constituents of alloy & their effect on properties of metal 			CO2, CO3, CO4
2.2.3 Properties & uses of Duralumin, Y-alloy and Al-Si alloy			
2.2.4 Copper – Properties & uses.			
2.2.5 Copper alloys – Constituents of alloy & their effect on properties of metal			
2.2.6 Properties & uses of Copper – Zinc alloys such as Muntz metal,			
manganese, bronze, Copper-Tin alloys such as Bronze, Copper-Aluminium			
alloys such as Aluminium bronzes.			
2.2.7 Lead and its hazard to the environment			
3 NON-METALLIC MATERIALS	18	10	
3.1 CONSTRUCTION MATERIALS			CO1,
3.1.1 Classification of rocks, common building stones and their applications.			CO2,
3.1.2 Cement: Types of cement, composition and applications			CO3,
3.1.3 Bricks: Composition, properties, Classification, Special bricks-			CO4
Refractory and fly-ash bricks and uses			
3.1.4 Clay: Types, products of clay- tiles and pipes			
3.1.5 Sand- sources – river, crushed aggregates, applications	1		
3.2 ENGINEERING CERAMICS			
3.2.1 Refractories: Desirable properties, Properties and Applications of Fire			CO1,
clay and Silica Refractory, Difference between acid, basic & neutral			CO2,
refractories			CO3,
3.2.2 Glass: Properties & uses of soda glass, borosilicate glass and fibre glass			CO4

	1		1
3.2.3 Glass wool: Composition, properties & uses			
3.2.4 Timber: Common varieties of timber, uses of wood products, veneer and			
plywood			
3.2.5 Natural & Synthetic abrasive materials: Introduction, Properties & uses			
4 CONDUCTOR, SEMI -CONDUCTOR, AND INSULATING	16	12	CO1,
MATERIALS			CO2,
4.1 Classification of Materials as Conductor, Semiconductor and Insulating			CO3,
materials			CO4
4.2 Conductor Material:			
4.2.1 High conductivity materials: Copper, Aluminium, Carbon, Silver, Lead			
& Tungsten, their properties as conducting materials and applications.			
4.2.2 High resistivity materials: nichrome, constantan, manganin and their			
applications			
4.3 Insulating Materials: Introduction and Characteristics of Good Insulating			
materials			
4.3.1 Solid Insulating materials- wood, paper, rubber, mica, glass fibre,			
porcelain, PVC, resins, their characteristics as insulating materials and			
applications			
4.4 Semiconductor Materials: Silicon & Germanium, their specifications as			
semiconductor material and uses.			
Unit 5 MAGNETIC & COMPOSITE MATERIALS	15	10	
5.1 Magnetic Materials: Classification as Diamagnetic, Paramagnetic,			CO1,
Ferromagnetic, List of these materials and their applications			CO2,
5.2 Composite Materials: metal matrix, ceramic matrix and polymer matrix			CO3,
composites, types of reinforcement materials and their applications			CO4
5.3 Paints & Lubricants:			
5.3.1 Classification: oil based and polymer based paints			
5.3.2 Constituents of Paints – resin, binder, pigment, additives, solvents			
5.3.3 Lubricants – Functions of lubricants, Types of Lubricants, Composition			
and Applications			
Total	75	48	
			1

6. COURSE DELIVERY: The Course will be delivered through lectures and class room interactions 7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit Name	Numberoflectures (hrs)	Marks
1	Introduction to Engineering Materials	04	08
2	Ferrous & Non-Ferrous Metals & its alloys	12	18
3	Non-Metallic Materials	10	18
4	Conductor, Semi-Conductor, & Insulating Materials	12	16
5	Magnetic & Composite Materials	10	15
		48	75

8. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers	
1	R.S. Khurmi	Material Science	S. Chand	
2	R. Srinivasan	Engineering Materials & Metallurgy	Tata McGraw Hill	
3	TTTI Madras	TTTI Madras Electrical Engineering Materials		
4	S. K. Hajra Choudhury	Material Science and Processes	Indian book distribution	
5	P. C. Varghese	Building Materials	PHI	
6		Electrical and Electronic	Katson	
	J. B. Gupta	Engineering Materials		

(SB301) BASIC SHIP THEORY I

1. COURSE OBJECTIVES: The theory course content is framed to impart knowledge to students regarding the general aspects of ship geometry, stability and numerical methods of calculating various ship forms and hydrostatic aspects. The practical content will enable the students to acquire the desired competency to prepare plan and section drawings of a ship from a given table of offsets, acquaint himself with numerical rules used in the ship related calculations and experience the calculation of fundamental hydrostatic particulars.

2. PRE-REQUISITES: Knowledge of Maths and Physics.

-		5
3. TEACHING	AND	EXAMINATION SCHEME

Semester	III									
Course code	Course code &		Periods/Week				Examination Scheme			
course titl	e	(in hours)		Hours	Theory Marks		Practical Marks		Total Marks	
(SB301)		L	Т	Р	H	TH	TM	TW	PR/OR	
BASIC SH THEORY		3	0	3	96	75	25	50	-	150

4.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. List and illustrate the nomenclature of floating bodies.
- 2. Apply the concept of mechanics of floating bodies to derive ship curves
- 3. Solve problems related to mechanics of floating bodies.
- 4. Prepare plans of ship geometry and hydrostatic properties.

5. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	1	2	2	2	1	1
CO2	3	2	2	1	2	1	2	3	-
CO3	3	3	2	2	1	2	2	2	-
CO4	3	3	2	3	2	2	2	3	-

Relationship : Low-1 Medium-2 High-3

Unit	Marks	Course
		Outcomes
1 INTRODUCTION TO SHIPS		
1.1 TYPES OF SHIPS	12	CO1,CO2,
		CO3,CO4
1.1.1 Features and functions of cargo ships (General Cargo Ship,		
Tankers, Container Ships, Bulk Carriers).		
, , , , , , , , , , , , , , , , , , , ,		

1.1.2 Features and functions of Roll-on Roll-off Ships.		
1.1.3 Features and functions of passenger vessels.		
1.1.4 Features and functions of small craft (Hydrofoil, Hovercraft,		
Catamaran, SWATH, Planing Craft)		
1.1.5 Features and functions of sea going vessels, inland vessels,		
Fishing Trawlers, Barges, Dredgers, Tugs, LPG Carriers.		
1.2 PRINCIPAL DIMENSIONS AND FORM COEFFICIENTS.		
1.3 PRINCIPLES OF FLOATATION		
1.3.1 Laws of floatation		
1.3.2 Motions of a ship.		
1.4LINES PLAN		
1.4.1 Hull form, Fairing of lines, table of offsets.		
2 INTEGRATION RULES		CO1,CO2,
2.1 Simpson's rule, Trapezoidal rule, Tchebycheff's rule.	15	CO1,CO2,
2.2 Application of integration rules in determining areas,	10	
volumes, centroids, first moments and moment of inertia of		
waterplanes of ships.		
3 SMALL ANGLE STABILITY		
3.1 Types of equilibrium. Initial stability: - Heeling and righting	18	CO1,CO2,
moments.	10	CO1,CO2, CO3,CO4
3.2 Statical stability curve-Range of stability, initial GM,		003,004
maximum GZ, angle of vanishing stability, Point of inflexions.		
Down-flooding angle.		
	-	
3.3 Effect of various factors on stability-Calculations of free surface effect.		
	-	
3.4 Longitudinal stability and trim.		
4 INCLINING TEST	10	<u></u>
4.1 Effect of shifting of weights, addition, removal and suspended	12	CO1,CO2,
weights on centre of gravity.	-	CO3.
4.2 Purpose and procedure of inclining experiment. Determination		
of center of gravity – Inclining experiment. Precautions in		
conduct of inclining experiment.		
5 BONJEAN AND HYDROSTATIC CURVES	10	<u></u>
5.1 Sectional area curve, Bonjean curve and hydrostatic curves	18	CO1,CO2,
5.2 Determination of volume of displacement, LCB, VCB from		CO3,CO4
Bonjean curves.		
5.3 Determination of volume of VCB/KB, KM, LCF, LCB, CB,		
CP, CVP, CM, CWP, MCT, TPC and displacement curves		
Total	75	
10141	15	

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to Ships	07	12
2	Integration rules	10	15
3	Small Angle Stability	12	18
4	Inclining Test	07	12
5	Bonjean and hydrostatic curves	12	18
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Unit	Practical	Marks	Course
				outcomes
1	1	Lines plan drawing – Main particulars, Table of offsets	20	CO3,CO4
		and body plan, half-breadth plan, profile view (buttock		
		lines), diagonal.		
2	1	Fairing of lines and preparation of faired offset table.	10	
3	1	Lines plan drawing -Use of ship design software	-	
4	2	Immersed cross sectional area and vertical moment	10	
		calculation, and development of Bonjean curves		
5	3	Media demonstration on stability concepts (Videos)	-	
6	4	Bonjean calculation & Bonjean curves: Use of Excel	10	
		sheets.		
		Total	50	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Derett, D. R	Ship Stability for Masters and	Stanford Maritime
		Mates	
2	Rawson, K.J. and	Basic Ship Theory, Vol I & II	Longman
	Tupper E.		-
3	Munro-Smith	Ships and Naval Architecture	Institute of Marine
		-	Engineers

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	John P. Comstock	Principles of Naval Architecture	SNAME
2	Baxter, B.	Naval Architecture Examples and Theory	Charles Griffin & Co
3	Thomas, Gillmer C.	Introduction to Naval Architecture	E & F.N. Spon
4	Munro – Smith, R	Naval Architecture for the Merchant Navy Exams	Technical Press

5	Stokoe, E.A.	Reed's Naval Architecture for	Thomas Reed
		Marine Engineers	Publisher Ltd.)
6	Muckle. W	Naval Architecture for Maritime	Butter Worths
		Engineers	
7	Hogg, Robert S.	Naval Architecture and Ship	Institute of Maritime
		Construction	Engineers

(SB 302) SHOP FLOOR PRACTICE

- 1. COURSE OBJECTIVES: To develop different types of skills leading to the achievement of competency To understand the construction, working operations on different machines used in shipbuilding yards and on ships. As a supervisor in Shipbuilding Engineering Industry, student should know the working principle of various machines used by the Industries, their work range, tools used for different operations. Enough practical exposure is also given to develop minimum skill to perform various operations. The student should be able to select the proper machine and proper tool for a particular operation. The student should be able to perform a given operation on a particular machine and take care of safety of men, machine and tools.
- 2. PRE-REQUISITES: Knowledge of Basic Engineering Skills.

3.	TEAC	HING	AND	EXAMI	INATION	SCHEM	E:

Semester III									
Course code &	Periods/Week		Total	Examination Scheme					
course title	(in hours)		Hours	Theory		Practical		Total	
				Marks		Marks		Marks	
(SB 302) SHOP	L	Т	Р	Н	TH	TM	TW	PR/OR	
FLOOR	3	0	3	96	75	25	50	-	150
PRACTICE									

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

1. Identify the different types of machining processes and machines.

- 2. Describe the tool geometry and principles associated with basic machining operations.
- 3. Sketch various machine tools and accessories.
- 4. Select the proper machines and cutting tools for performing operation on a job.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2	
CO1	2	1	1	2	2	2	1	1	2	
CO2	3	2	1	2	1	2	2	-	2	
CO3	2	2	2	2	1	2	1	-	1	
CO4	2	2	2	2	2	2	1	2	3	

Relationship : Low-1 Medium-2 High-3

	MAR KS	COURSE OUTCOME S
UNIT 1:LATHE MACHINE		
1.1 Introduction, different parts of Lathe and its specification,	15	CO1,CO2
1.2 Methods of taper-turning – their advantages and limitations.		CO3,CO4
1.3 Thread cutting on lathe,		

Directorate of Technical Education, Goa State

1.4 Accessories used on lathe,		
1.5 Different tool materials and cutting fluid.		
UNIT 2: BORING AND DRILLING MACHINES		
2.1 Introduction and Types of Boring machines,	20	CO1,CO2
2.1.1 Horizontal Boring machine,		CO3,CO4
2.1.2 Horizontal boring machine operations,		
2.1.3 Boring tool mountings for horizontal boring machine.		
2.2 Introduction, types of drilling machines.		
2.2.1 Construction and working of Pillar drilling machine & Radial drilling machine.		
2.2.2 Work holding devices on drilling machine,		
2.2.3 Tool holding devices on drilling machine.		
2.2.4 Operation of drilling machine.		
2.2.5 Tools used on drilling machine		
UNIT 3: MILLING AND SHAPING MACHINE		
3.1 Introduction and Types of milling machines.	18	CO1,CO2
3.1.1 Operation carried out on milling machine.		CO3,CO4
3.1.2 Types of milling cutters: Plain, Side, Metal Slitting Saw, Angle Milling Cutter, End Mill		
3.1.3 Milling machine attachment: Vertical, Universal, High Speed, Dividing Head Attachment.		
3.2 Introduction and Types of shaping machine.		
3.2.1 Main parts of standard Shaper and their functions		
3.2.2 Shaper operations.		
UNIT 4: BENDING AND PRESS WORK		
4.1 Introduction to Bending, Nomenclature of Bending.	16	CO1,CO2
4.1.1 V Bending, Edge Bending, U Bending		CO3,CO4
4.1.2 Spring Back in Bending		
4.2 Introduction and Types of presses.		
4.2.1 Construction and working of fly press.		
4.2.2 Power press-driving mechanisms.		

5.1 Introduction and Classification of NC machines.		06	CO1,CO2
5.2 Advantages and its Limitations			CO3
5.3 Principle of Operation of a NC Machine Tool			
5.4 NC/CNC/DNC System			
5.5 Introduction to G codes & M Codes			
	Total	75	-

The Course will be delivered through lectures, class room interactions, exercises and case studies.

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of	Marks
		lectures	
1	Lathe Machine	10	15
2	Boring and Drilling Machines	12	20
3	Milling and Shaping Machine	12	18
4	Bending machine and Press work	10	16
5	NC and CNC Machines	04	06
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks	COURSE OUTCOMES
1.	Introduction to various machinery.		CO1,CO2
2.	One job involving facing, plain turning, step turning, taper turning		CO3,CO4
	and external threading.		
3.	One job involving internal 'V' threading (Demonstration).		
4.	One job involving Drilling operation.		
5.	One job involving Shaping & Milling operation.		
6.	One job in Pipe Bending (Demonstration).		
7.	One job involving Press Operation (Demonstration).		
8.	Demonstration of CNC Machines		
	Total	50	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	S.K.Hajra Choudhary,	Elements of workshop	Media Promotions &
	S.K Bose & A.K.Aajra	Technology Vol-II	Publishers Pvt. Ltd.
	Choudhary.		
2	Suresh Dalala.	Manufacturing science &	Umesh
		Technology Vol-II	Publications
3	K.N. Gupta & J.P.	Workshop Technology Vol-II	New Heights Publishers
	Kaushish		

4	H.S. Bawa	Workshop technology Vol-II	Tata Mcgraw Hill
			Publication
			Company Ltd.

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Jhon A Schey	Introduction to Manufacturing	McGraw Hills
		Processes	International
2	B. S. Pabla and M	CNC Machines	New Age
	Adithan		International
			Publishers

(SB 303) INTRODUCTION TO THERMODYNAMICS

1. COURSE OBJECTIVES: The course content is designed for students to familiarize with the science of thermodynamic processes and its application. A general survey carried out to determine the competencies required by a diploma in Shipbuilding Engineering student revealed that the student should have an elementary knowledge of Thermodynamics. The knowledge that he acquires in this subject is essential to a student of Marine Engineering. In view of this emphasis has been laid on topics like gas processes, IC Engines, properties of steam, heat transfer and introduction to refrigeration. This subject thus provides the required cognitive skills to the student to take further courses in Marine Engineering.

2. PRE-REQUISITES: Engineering Maths-I, Applied Physics I and Applied Physics II 3. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Perio	Periods/Week		Total	Examination Scheme				
course title	(in h	(in hours)		Hours	Theor	y	Pract	ical	Total
	Marks		S	Marks		Marks			
SB 303	\mathbf{L}	Т	Ρ	H	TH	TM	TW	PR/OR	
Introduction to	3	0	1	64	75	25	25	-	125
thermodynamic	s								

4.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. List the terms related to thermodynamics.
- 2. Explain the various thermal processes.
- 3. Sketch the various thermal processes and cycles.
- 4. Solve the problems related to thermal processes.

5. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	1	1	1	1	-	2
CO2	3	1	1	1	1	1	2	-	2
CO3	3	2	2	-	-	1	2	-	2
CO4	3	3	2	-	1	1	2	-	1

Relationship : Low-1 Medium-2 High-3

0. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN Unit	Marks	Course Outcomes
Unit 1. Basic concepts of thermodynamics		
1.1 Introduction, working substance or medium, system, state, properties of a substance process and cycle	15	C01,C02,C03
1.2 System of units, units of pressure, units of volume, units of temperature, units of work & power, units of energy.		C01,C02.
1.3 Law of thermodynamics, Zeroth law of thermodynamics, first law of thermodynamics & second law of thermodynamics		CO1,CO2,CO3
1.4 Specific heat, perfect gas laws, characteristic equation for a perfect gas		CO1,CO2,CO3
1.5 Basic concepts of heat transfer, Heat transfer by conduction, Convection and radiation.		CO1,CO2,CO3
1.6 Fourier law of heat by conduction		CO2,CO3,CO4.
Unit 2 Gas Processes		
2.1 • Thermodynamic processes of gases, constant volume process, Processes on P-V diagram. Constant pressure process, Constant temperature process. Calculations of basic thermodynamic properties, work done and heat transferred.	15	CO1,CO2,CO3, CO4
2.2 Adiabatic process. Calculations of work done and heat transferred.		CO2,CO3,CO4
Unit 3 : Internal Combustion Engines		
3.1 • Introduction to air standard cycles – Otto cycle, Diesel cycle, Dual cycle. Representation on PV diagram.	18	C01,C02,C03
3.2 Swept volume, compression ratio, volumetric efficiency, and cubic capacity.		CO1,CO2,CO3.
3.3. Functions of various engine systems of diesel engine		CO1,CO2.
3.4 Working of two and four stroke diesel engine, comparison of two stroke and four stroke diesel Engine.		CO1,CO2,CO3.
3.5. Indicated power and brake power calculation. Mechanical efficiency and Brake thermal efficiency calculation for single acting engines.		CO3,CO4
Unit 4. Properties of steam		
4.1 Introduction, Formation of steam at constant pressure, effect of pressure on boiling point of water.	12	CO1,CO2,CO3
4.2 Saturated steam, dry saturated steam, superheated steam		CO1,CO2,CO3
4.3 Dryness fraction of saturated steam, Sensible heat, latent heat of vaporization.		CO2.
4.4 Elementary problems to determine the properties of steam.]	CO3,CO4.
4.5 Application of steam on ships.		CO1
Unit 5 Refrigeration cycles		
5.1 Vapor Compression refrigeration cycle	15	CO1,CO2,CO3

5.2 Introduction to components and their functions		CO1,CO2.
5.3 Refrigerating effect, Coefficient of performance,		CO2.
Refrigeration capacity.		
5.4 Refrigerants, harmful effects of refrigerants on environment		CO1,CO2.
5.5 Application of refrigeration on ships		CO1
5.6Representation on P-H and T-S chart, Calculations for COP		CO3,CO4
and capacity		
(for vapour compression cycle with 100% dry vapour entering		
the compressor and without subcooling).		
Total	75	

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No.	Unit	Number of lectures	Marks
1	Basic Concepts of Thermodynamics	10	15
2	Gas Processes	10	15
3	Internal Combustion Engines	12	18
4	Properties of Steam	08	12
5	Refrigeration Cycles	08	15
		48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No.	Practical	Marks	COURSE OUTCOMES
1	Study of different parts of IC engines		CO1,CO2,CO3, CO4
2	Calculation of indicated power, brake power and mechanical efficiency.		004
3	Determining the properties of steam using steam table		
4	Study on the elements of heat transfer		
5	Determination of C.O.P of vapour compression refrigeration system.		
	Total	25	

10 . LEARNING RESOURCES

Text Books

Sr.No.	Author	Title of book	Publication
1	S-G Patel and Karamchandani	Elements of heat engines Vol. I	Acharya Publication
2	P.L Ballaney	Thermal Engineering	Khanna Publication
3	P.K. Nag	Engineering Thermodynamics	Tata McGraw Hill

Reference Books for further study

Sr.No.	Author	Title of book	Publication
1	Domkundwar	Heat and Mass transfer	DhanpatRai Publication
2	C. P. Arora	Refrigeration and Air-conditioning	Tata McGraw Hill

(CC301) ENGINEERING MECHANICS

3. COURSE OBJECTIVES:

The students will be able to acquire knowledge of Engineering Mechanics is imperative in the analysis of static or dynamic force systems. The related concepts find extensive applications in the analysis of machine elements, fluids, structures, and every engineering problem that involves force or motion. The subject is a basis of myriads of higher-level subjects like Hydraulics, Strength of Materials, Theory of Machines and Machine Design, and practically there is no branch of engineering where the subject renders no scope.

2. TEACHING AND EXAMINATION SCHEME

Semester	III									
Course coo	Course code &		Periods/Week		Total		Examination Scheme			
course tit	le	(i	n hour	s)	Hours	Theory	Marks	Practi	cal Marks	Total Marks
(CC301)		L	Τ	Р	Н	TH	ТМ	TW	PR/OR	
Engineering Mechanics		3	1	1	80	75	25	25	-	125

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC301CO1: Define various force systems, Equilibrium, centre of gravity, friction & dynamics.

- CC301CO2: Explain methods to determine unknown reactions, forces, velocities and accelerations, Centroid, centre of gravity, friction machine efficiency, momentum & impulse.
- CC301CO3: Solve problems on equilibrium of rigid bodies, centre of gravity, simple machines, friction, kinetics, momentum & impulse.

CC301CO4: Verify various laws & machine equations.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PS01	PSO2
CO1	3	1	-	-	-	-	-	1	2
CO2	3	2	1	1	-	1	-	1	2
CO3	3	3	2	1	-	1	2	-	2
CO4	3	3	1	2	1	2	2	-	-

Relationship : Low-1 Medium-2 High-3

Unit	Marks	Course Outcomes
1 Forces and Moments.		
1.1 FUNDAMENTALS	3	
Definition and unit of force, types of force, characteristics of force, effects of force, principle of transmissibility of force, resultant, equilibrant.		

1.2 FORCE SYSTEM System of forces, resolution and composition of forces (Resolution along x and y axis), resolution of force along a plane and perpendicular to it (only introduction, no problems to be framed.)	3	CO1 CO2 CO3
1.3 RESULTANT Application of the principle of resolution to—1) find the resultant of a coplanar, concurrent force system, and 2) determine the missing force when the resultant is given.	6	CO4
1.4 MOMENT Moment—Definition, unit, sign convention (clockwise moment +, anticlockwise -), couple and its characteristics. Avignon's theorem statement and application to compute the resultant in magnitude, direction and position in case of coplanar non-concurrent, and coplanar parallel force system.	6	
2 Equilibrium.		
2.1 FUNDAMENTALS Concept of equilibrium of forces, conditions of equilibrium of two forces, three forces, concurrent and non-concurrent force systems, concept and drawing of free body diagram for not more than three bodies.	3	
2.2 LAMI'S THEOREM Lami's theorem- statement and application to problems based on strings with suspended weights, and spheres.	6	CO1 CO2 CO3 CO4
2.3 BEAMS Types of beams, types of support, types of loadings. Application of equilibrium conditions to the beams (Beams with simple or roller support at the two ends) with concentrated loading, UDL, partially applied UDL only.	6	
3 Centroid and Centre of gravity.		
Definition of centroid, centroid of rectangle, triangle, circle, semicircle, trapezium. Centroid of simple composite figures (including cut out sections.) Definition of centre of gravity. Centre of gravity of solids cone, sphere, cylinder, hemisphere, rectangular solid. Centre of gravity of simple composite solids (including cut out solid portions)	9	CO1 CO2 CO3
4 Friction and Simple machines		
4.1Friction—FUNDAMENTALS	3	CO1

 Concept of friction, Coulomb's law of static friction, coefficient of friction, angle of friction, cone of friction, angle of repose. 4.2 APPLICATIONS Application of concept of friction to a block resting on horizontal or inclined plane, 	6	CO2 CO3 CO4
Iadder friction. 4.3 FUNDAMENTALS OF SIMPLE MACHINES Definition of simple machine, load, effort, mechanical advantage, velocity ratio, efficiency of machine, law of machine, reversibility of machine, self-locking machine. (Simple problems to be framed, no derivations.)	3	
4.4 STUDY OF SIMPLE MACHINES Simple axle and wheel, single purchase crab, double purchase crab, screw jack. (Simple problems to be framed, no derivation.)	6	
5 Dynamics		
5.1 KINETICS D' Alembert's principle and its applications to solve simple problems related to motion of lift, two bodies connected by a single string passing over a pulley, two string connected bodies of which one is lying on a horizontal plane (or on inclined plane) while the other suspended freely.	9	CO1 CO2 CO3 CO4
5.2 MOMENTUM, IMPULSE AND IMPULSIVE FORCE Momentum, impulse and impulsive force—definition and unit. Law of conservation of momentum, simple problems based on momentum, impulse, impulsive force, and law of conservation of momentum.	6	
Total	75	

The course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Force and moment	10	18
2	Equilibrium	10	15
3	Centroid and centre of gravity	7	9
4	Friction and simple machines	12	18
5	Dynamics	9	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

Sr. No.	Practical (Minimum six to be conducted)	Marks
1.	Verification of Polygon law of forces.	
2.	Verification of Lami's theorem.	

SHIPBUILDING ENGINEEERING CURRICULUM

3.	Determination of coefficient of friction (between any two different surfaces.)	
4.	Calculation of support reactions using Beam apparatus.	
5.	Determination of MA, VR, efficiency and law of machine for any three simple lifting	
	machines.	
6.	Determination of angle of repose.	
7.	Determination of the resultant of coplanar and concurrent forces (Graphical	
	analysis, one sheet.)	
8.	Determination of the resultant of coplanar, non-concurrent forces, and parallel	
	forces. (Graphical analysis, one sheet.)	
No	Class room Assignments	
1	At least three assignments covering above units.	
No	Tutorial Exercise	
1	At least six problems on each of the units mentioned above.	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Dhade, Jamdar and	Fundamentals of Applied Mechanics	Sarita Prakashan,
	Walawalkar.		Pune.
2	R.S.Khurmi	Applied Mechanics	S. Chand
3	A. R. Basu	Engineering Mechanics	Tata MacGraw Hill,
			Delhi.
4	Patel, Sanghavi and	Engineering Mechanics	Mahajan Publishing
	Thakur		House, Ahmedabad.

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publis	hers	
1	Beer-Johnson	Engineering Mechanics	Tata	McGraw	Hill,
			Delhi.		
2	Joseph F. Shegley	Vector Mechanics for Engineers Vol-1	Tata	McGraw	Hill,
		and 2	Delhi.		

9.3Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1	WizlQ	https://www.wizig.com/tutorials/applied-	-
		mechanics	
2	NPTEL	https://nptel.ac.in/courses/122102004	-

9.4 Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1	NITTTR	CDs of experiments in Engineering	-
		Mechanics.	
2	NPTEL	CDs of experiments in Engineering Mechanics.	-

(CC302) ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING 1. COURSE OBJECTIVES:

The students will be able to acquire knowledge about electrical and electronics engineering relevant to his job requirement of operation and maintenance in industry. The students will able to acquire basic knowledge of distribution of electrical energy including wiring & Earthing, use of various protective devices, construction & working of Transformer, Motors etc.

2. TEACHING AND EXAMINATION SCHEME

Semester	=									
Course coo	Course code &		Periods/Week			Examination Scheme				
course title		(in hours)		Hours	Theory Marks		Practical Marks		Total	
										Marks
(CC302) ELEN	IENTS	L	Т	Р	Н	TH	ТМ	TW	PR/OR	
OF ELECTR	ICAL	3	-	2	80	75	25	25	-	125
AND										
ELECTRON	IICS									
ENGINEER	ING									

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC302CO1: Describe concepts in distribution of electrical power.

CC302CO2: Illustrate the construction and working of different types of electrical machines, electrical & electronic devices.

CC302CO3: Sketch simple electrical & electronic circuits.

CC302CO4: Compare different types of electrical machines and simple electronic circuits.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	-	-	1	1	-	-	1	2
CO2	2	1	-	1	1	1	2	1	2
CO3	2	-	1	-	-	1	-	1	1
CO4	2	1	1	1	1	2	2	1	1

Relationship : Low-1 Medium-2 High-3

Unit	Marks	Course Outcomes
1 Distribution of Electrical Energy		
substation to 11KV/440V distribution transformer (using single line diagram only). Voltage levels for commercial and domestic use. 1.2 Features of Overhead and underground distribution systems and their comparison	15	CO1 CO3
1.3 Features of Conduit wiring system- surface and concealed, its advantages and disadvantages.		

1.4Definition of Earthing, its necessity. Types of Earth electrodes—Pipe and Plate		
electrode. Methods of reducing earth resistance.		
2 Cables, Switching and Protective Devices	18	CO1
2.1 Construction of three phase PVC insulated power cables. Specifications of PVC	-	CO1
cables. Colour codes of single phase and three phase PVC cables. Method of laying underground cables.		CO2 CO3
2.2 Fuses- Construction and Applications of Rewirable fuses and HRC fuses.	-	005
Functions and symbols of Switch-Fuse Unit, Fuse-switch Unit, Contactors, MCB,		
MCCB and ELCB.		
2.3 Construction and operation of a simple electromagnetic relay and limit switches.	-	
3 Transformers		
3.1 Principle of operation and basic construction of a single-phase transformer	6	CO1
(core and winding only). Comparison between core type & shell type arrangement	Ŭ	CO2
.EMF equation (no derivation and no numerical).		CO3
3.2 Losses in a transformer, efficiency and concept & significance of voltage	-	
regulation (no derivation and no numerical). Significance of KVA Rating of		
transformer.		
4 DC and AC Motors		
4.1 Working principle of DC motors, main parts of DC motor and their functions,	18	CO1
Classification of DC motors (shunt, series and compound and their applications).		CO2
Necessity of a starter for DC motors (No study of starters).		CO4
Methods of reversal of direction of rotation of DC shunt and series motor.		
Methods of Speed control for DC shunt motors		
4.2 Principle of operation of three phase induction motor. Main parts of three phase		
squirrel cage & Slip Ring Induction motors. Applications of induction motors.		
Necessity of starter, Names of starters used, reversal of direction of rotation.		
4.3 Working principle of an alternator.		
5 Basic Electronic Devices & Logic Gates		
5.1Semiconductor theory-Construction of Intrinsic and extrinsic semiconductor, P	15	
and N type semiconductors, working principle of Diode, diode V-I characteristics,		CO2
5.2 Full wave centre-tap and bridge rectifiers- circuit diagram, operation and		CO3
waveforms, capacitor filter to reduce ripple voltage.	_	CO4
5.3 Transistor -NPN and PNP, construction, symbol and operation. Transistor CE		
Amplifier-circuit diagram and operation using waveforms only. Applications of		
transistors (naming only)	4	
5.4 Binary number system, Symbols and Truth Tables of AND, OR, NOT, NAND,		
NOR, X-OR, X-NOR Gates		
Total	75	

The Course will be delivered through lectures, class room interactions, exercises and case studies **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit No	Unit	Number of lectures	Marks	
1	Distribution of Electrical Energy	11	15	
2	Cables, Switching and Protective Devices	10	18	
3	Transformers		04	09
---	--	-------	----	----
4	DC and AC Motors		12	18
5	Basic Electronic Devices & Logic Gates		11	15
		Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical (Any eight to be conducted)	Marks
1.	Identification of various components of a Diesel-Engine Generator set and study its operation.	
2.	Connection of a single-phase Transformer and Calculation of its efficiency & Voltage Regulation for different loads.	
3.	Simulation of fuse failure on any one primary phase of a 3-phase transformer and study its effect on the secondary voltages.	
4.	Connection and Starting of three phase induction motor using manual and automatic star delta starter	
5.	Connection, starting, running and speed control of Slip Ring induction motor	
6.	Calculations for selection of PVC cables for different currents.	
7.	Identification of Fuses, MCBs and ELCBs and study of operation of MCB and ELCB for different simulated faults.	
8.	Circuit assembly, measurement of input and output voltages and fault simulation and troubleshooting of Bridge and Centre-tap Rectifiers	
9.	Circuit assembly for ON/OFF control of single-phase loads such as lamps, home appliances, etc. using transistorized circuit and a Relay.	
10.	Verification of truth tables of Logic Gates	
11.	Mini Electronic project	
	Total	25

9. LEARNING RESOURCES

9.1Text Books

S. No.	Author	Title of Books	Publishers
1	B.L. Thereja.	Text book of Electrical Technology Vol I & Vol II	S Chand & Comp. Ltd
2	V.K. Mehta	Principles of Electronics Engineering (Revised Addition)	S Chand & Comp. Ltd

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	J B Gupta	Course in Electrical Power (Latest Adddition)	S K Kataria & Sons.
2	B.L. Thereja.	Text book of Electrical Technology Vol	S Chand & Comp. Ltd

(MC 304) COMPUTER AIDED DRAFTING

1. COURSE OBJECTIVES:

The students will be able to acquire knowledge of CAD software for preparing 2D and 3D drawings. The market driven economy demands frequent changes in product design to suit the customer needs and the introduction of drafting and designing softwares in manufacturing has made the task of incorporating frequent changes as per requirement easier. This course will make the student capable of creating, editing and plotting quality CAD drawings using CAD software.

2. TEACHING AND EXAMINATION SCHEME

Semester	≡									
Course coo	de &	Periods/Week		Total	Examination Scheme					
course tit	tle	(i	n hou	rs)	Hours	Theory	Marks	Practi	cal Marks	Total
										Marks
(MC	304)	L	Τ	Ρ	Н	TH	ТМ	TW	PR/OR	
COMPUTER		-	-	4	64	-	-	50	50	100
AIDED										
DRAFTING										

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC304CO1: Identify the various Toolbars and commands required for making 2D & 3D drawing.

MC304CO2: Interpret the use of Toolbars & commands in making 2D & 3D drawing.

MC304CO3: Select the correct toolbars & commands in making 2D & 3D Drawings.

MC304CO4: Develop 2D & 3D drawing in CAD environment.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	-	1	1	-	1	2	3	1
CO2	2	1	1	1	-	1	2	3	-
CO3	2	2	2	1	-	1	2	1	1
CO4	2	2	3	2	2	2	3	3	1

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS FOR TERM WORK & PRACTICALS

Unit	Marks	Course Outcomes
1 Introduction and CAD Preliminaries.	-	
1.1 Computer aided drafting concept.		
1.2 Hardware and various CAD software available		CO1

1.3 Components of a CAD software such as various toolbars in respective		CO2
software's		
1.4 File features Management: (like New file, Saving the file, Opening, Import and	-	
Export of file)		
1.5 Setting up the CAD environment	-	
2 Drawing, Editing, Modifying and organizing 2D drawing:	-	
2.1 Drawing basic geometric elements	-	CO1
2.2 All View Commands: (like Zoom all, Zoom Previous, Zoom Extents, zoom	-	CO2
window, zoom real time, Zoom Dynamic, Zoom Pan)		CO3 CO4
2.3 All Modify commands / Transformation commands: such as Mirror, Array,	-	
Move, Scale, Trim, chamfer, fillet.		
2.4 Concepts of layers and blocks.	-	
3 Dimensioning and Tolerancing	-	
3.1 Dimensioning: Types of dimensioning, Linear, Horizontal, Vertical, Aligned,	-	CO1
rotated, Baseline, continuous, diameter, radius, angular dimension, Leader.		CO2
3.2 Dimension scale variable, adding geometric tolerances	-	CO3 CO4
3.3 Editing dimensions	-	
3.4 Text styles: selecting font, size, arrows, alignment, line text, Multiline text.	-	
4 Solid Modelling	-	
4.1 3D features such as understanding co-ordinate system, Viewing in 3D	-	CO1
4.2 Concept of solid modelling	-	CO2
4.3 Creating predefined solid primitives such as box, cone, cylinder, sphere, torus,	-	CO3 CO4
wedge.		
4.4 Creating an extruded solid, creating a revolved solid.	-	
4.5 Creating composite solids	-	
4.6 Rendering	-	
5 Model space, Paper space, viewports, layouts & Printing/Plotting	-	
5.1 Concept of model space and paper space		CO1 CO2
5.2 Creating viewports in model space and creating floating viewport in paper space.		
5.3 Shifting from model space to paper space and vice versa.	-	
5.4 Selecting various plotting parameters such as paper size,	-	

6.	paper units, drawing orientation, plot scale, plot offset, plot area,		
	print preview.		
	Total	50	

COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **07. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.**

No	Practical	Marks
1.	Drafting of common template for all the following assignments with Institute logo and	03
	standard title block.	
2.	At least Five problems on different geometrical shapes using basic commands.	05
3.	At least Three problems with transformation features.	07
4.	Two problems on orthographic views for various Engineering drawing objects covering	10
	dimensioning, text.	
5.	Create at least two solid models, which cover all the features available in solid modelling.	15
6.	Drafting project:	10
	a) Civil Engg. & Architectural Engineering: Plan, elevation and section of a	
	single-story residential building.	
	b) Electrical & Electronics and Allied Engg. Branches: Electrical layout of	
	components like bulbs, fan, A.C., T.V. point, telephone point, etc. for a single-story house.	
	c) Mechanical and Allied Engg. Branches: Industrial components such as	
	machines, automobiles, jigs and fixtures with dimensioning, tolerancing, text,	
	title block, Assembly etc.	
	d) Shipbuilding Engg. Body plan of a ship.	
	e) F.T.E.E.: Front View and Bottom View of a Simple truss like Saw Tooth	
	truss, King-Post truss, Snow Tooth truss. (Any one of the three)	50
	Total	50

8. LEARNING RESOURCES

8.1Text Books

S. No.	Author	Title of Books	Publishers
1	P. Nageshwar	AutoCAD for Engineering drawing made easy -	Tata McGraw Hill.
	Rao	P. Nageshwar Rao- Tata McGraw Hill.	
2	Sagar Linkan	AutoCAD 2018 training Guide	BPB Publications
3			
4	Sham Tickoo	PRO/ Engineer PTC creo parametric 3.0	Dreamtech Press (2015)
5	Sham Tickoo	Solid Works 2018	BPB Publication
6	Nader G.	CATIA V5 Tutorials	SDC Publications
	Zamani.		

S. No.	Author	Title of Books	Publishers
1	Sham Tickoo	Pro/ENGINEER Wildfire 5.0 for Designers	CADCIM Technologies
2	Sham Tickoo	AutoCAD 2019: A problem Solving Approach	BPB Publication
3	George Omura	Mastering AutoCAD	BPB Publication
4	Sham Tickoo	CATIA V5-6R2017 for Designers 15th Revised Edition	BPB Publication

8.2 Reference Books for further study

(MC 401) STRENGTH OF MATERIALS

1. COURSE OBJECTIVES:

Through this course the students will able to understand the fundamentals of solid mechanics, acquire the elementary knowledge of stresses, strains and their effects. They will also analyze the behavior of machine parts under various loads. It is important to understand and analyze various types of loads, stresses and strains, which are the main causes of failure of machine parts. The subject also deals with understanding the properties of engineering materials and applying the same in solving engineering problems.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course coo	Per	iods/W	leek	Total		Exan	nination	Scheme		
course ti	tle	(i	n hour	s)	Hours	Theory Marks Practical Marks		cal Marks	Total Marks	
(MC 401) Str	ength	L	Τ	Р	Н	TH	TM	TW	PR/OR	
of Materia	als	3	1	1	80	75	25	25	-	125

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

ME401CO1: Describe behaviour of engineering materials under the action of external loads.

ME401CO2: Represent simple stress & strain, SF & BM, Moment of inertia, bending stresses & torsion.

ME401CO3: Solve various problems on simple stresses & strains, SF & BM diagrams, bending stresses, moment of inertia & torsion.

ME401CO4: Analyse the behaviour of materials under various loads.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2		
CO1	3	1	-	-	2	-	2	2	2		
CO2	3	3	1	1	-	1	1	2	3		
CO3	3	2	2	1	-	-	2	2	2		
CO4	3	3	2	1	1	1	2	2	2		
D1/ 1											

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

Units:	Marks	Course Outcomes
1. SIMPLE STRESS AND STRAIN	15	
1.1 Definition of stress and strain (Numericals on stress and strain)		
1.2 Stress – strain Curve for Ductile Material labeling the significant points on the		
curve.		
1.3 Concept of elastic limit, Hooks law &Young's Modulus of Elasticity		
1.4 Deformation expression of a body subjected to single force [$\delta I = PL/AE$]		CO1
1.5 Numericals based on concept of principle of Superposition [Bars of uniform		CO2
cross section & Bars of different cross sections only]		CO3
1.6Concept of lateral strain and Poisson's Ratio.		CO4
[Numericals on lateral strain & Poisson's Ratio to be covered]		

1.7 Concept of shear stress, shear strain and Modulus of Rigidity.		
1.8 Definition of term- volumetric strain and bulk Modulus [No Numericals]		
Note: - [Numericals on stresses in composite sections are to be excluded.]		
2. SHEAR FORCE & BENDING MOMENT	15	
2.1 Types of beams and Supports.		CO1
2.2 Concepts of shear force & Bending Moment.		CO2
2.3 Sign Conventions for shear force & Bending Moment.		CO3
2.4 Shear force and bending moment diagram for simple cantilever and simply	/	CO4
supported beams subjected to point and uniformly distributed load only.		
3. MOMENT OF INERTIA	15	
3.1 Definition of Moment of Inertia		CO1
3.2 Perpendicular & Parallel Axis Theorem.		CO2
3.3 Expression of M.I of Rectangular, circular, Triangular & hollow Rectangula	r	CO3
sections (No derivations, simple numericals).		
3.5 Numericals on sections like L section, T section and I section		
4. THEORY OF SIMPLE BENDING	15	CO1
4.1 Concept of pure Bending.		CO2
4.2 Theory of simple Bending, Neutral Axis and Bending equation.		CO3
4.3 Bending stress distribution diagram		CO4
4.4 Application of bending equation for solid rectangular, solid circular section	,	
hollow rectangular and hollow circular section. (simple numericals)		
5. TORSION	15	
5.1 Concept of pure Torsion		CO1
5.2 Torsion equation assumptions in Theory of pure torsion.		CO2
5.3 Strength of circular solid & hollow shaft in pure torsion.		CO3
5.4 Shear stress distribution diagram.		CO4
5.5 Polar Modulus, power transmitted by shaft.		
Total	75	

N.B: - Question paper will not carry questions on derivations

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and tutorials.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	SIMPLE STRESS AND STRAIN	10	18
2	SHEAR FORCE & BENDING MOMENT	10	18
3	MOMENT OF INERTIA	10	15
4	THEORY OF SIMPLE BENDING	09	12
5	TORSION	09	12
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical (no 1 and 2 are compulsory and any 03 from 3 to 8)	Marks
1.	Tensile Test on M.S or Al using UTM	4
2.	Compression Test on wood/Resin sample using UTM	3
3.	Shear Test on M.S using UTM	3
4.	Brinell Hardness Test on Hardness Testing Machine	3
5.	Rockwell Hardness Test on Hardness Testing Machine	3
6.	Izod Impact Test on M.S or Al.	3
7.	Charpy Impact Test on M.S. or Al.	3
8.	Torsion Test on M.S Specimen.	3
	Total	25
No	Tutorial Exercise	
1	Solve atleast 5 problems on unit 1	
2	Solve atleast 5 problems on unit 2	
3	Solve atleast 5 problems on unit 3	
4	Solve atleast 5 problems on unit 4	
5.	Solve atleast 5 problems on unit 5	

9. LEARNING RESOURCES

9.1Text Books

S. No.	Author	Title of Books	Publishers
1	R.S Khurmi	Strength of Materials	S.Chand Publisher
2	S.S. Bhavikatti	Strength of Materials	Vikas Publishing
3	S. Ramamurtham	Strength of Materials	DhanpatRai&Sons
4	R. K. Rajput	Strength of Materials	S.Chand Publisher

9.2 Reference Books for further study

S. Author No.		Title of Books	Publishers			
1	F.L. Singer	Strength of Materials	London Harper & row			
2	Timoshenko & Gere	Mechanics of Materials	CBS Publisher & Distributors, New Delhi			

(SB401) BASIC SHIP THEORY II

1. COURSE OBJECTIVES: The theory course content is framed to impart sufficient knowledge of stability at large angles, damaged conditions, capacity calculations, launching operation, and strength of ships. The courses contents will enable students to have sufficient knowledge of stability at large angles, damaged conditions, capacity calculations, launching operation, and strength of ships. The practical is designed so that the pass-outs will be able to perform basic hydrostatic and capacity calculations, launching curves and estimation of steel weight for simple structure.

2. PRE-REQUISITES: Knowledge of Maths , physics, and Small angle stability

3. TEACHING AND EXAMINATION SCHEME

Semester I	V									
Course code &	Periods/Week			Total	Exami	Examination Scheme				
course title		(in hours)		Hours	Theory Marks		Practical Marks		Total Marks	
(SB401)		L	Т	P	Н	TH	TM	TW	PR/OR	
BASIC SHI THEORY I		3	0	3	96	75	25	50	-	150

4.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. List and illustrate the nomenclature of stability, capacity, launching and strength of ships.
- 2. Understand the concept of mechanics of floating bodies to derive ship curves
- 3. Apply mechanics of floating bodies to ship structures.
- 4. Prepare curves of ship geometry and ship motion.

5. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	3	2	1	1	1	2	2	2
CO2	3	3	2	1	1	2	2	2	1
CO3	3	3	2	1	1	2	2	3	1
CO4	2	2	1	1	1	2	2	3	2

Relationship : Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

Unit	Marks	Course Outcomes
1 LARGE ANGLE STABILITY		
1.1 Statical stability curve.	21	CO1,CO2, CO3,CO4.
1.2 Cross curves of stability.		,000

1.3 Determination of GZ curve from cross curves.		
1.4 Atwood's and wall-sided formula	-	
	_	
1.5 Dynamical stability.		
2 DAMAGE STABILITY		
2.1 Permeability, margin line, subdivision, floodable length and	18	CO1,CO2,
permissible length		CO3.
2.2 Drafts after flooding		
2.2.1 Lost buoyancy method.		
2.2.2 Added weight method		
2.3 Effect of flooding.		
2.6 Determination of draft, list, trim and stability after flooding for		
3 STRENGTH OF SHIPS		
3.1 Longitudinal strength	18	CO1,CO2,
3.1.1 Weight curve,		CO3,CO4.
3.1.2 Buoyancy curve		
3.1.3 Sheer force and bending moment diagrams for still water		
condition.	_	
3.2 Calculation of hull girder section modulus and stresses		
induced on deck and keel	_	
3.3 Check on mid-ship section modulus.	_	
3.4 Wave bending moment.		
4 CAPACITY		
4.1 Capacity	09	CO1,CO2.
4.2 Stowage factor	_	
4.3 Bale and grain capacity	_	
4.4 Capacity plan.		
5 LAUNCHING		
5.1Principles and types of launching.	09	CO1,CO2.
5.2 Side and end launching.		CO3,CO4.
5.3 Pivoting and tipping.		
5.4 Launching curves and Characteristics.		
5.5 Launching from graving dock, floating dock and ship lift.		
Total	75	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Directorate of Technical Education, Goa State

Unit No	Unit	Number of lectures	Marks
1	Large Angle Stability	13	21
2	Damage Stability	12	18
3	Strength Of Ships	12	18
4	Capacity	05	09
5	Launching	06	09
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Unit	Practical	Marks	Course Outcomes
1	1	Calculation of hydrostatic parameters and developing hydrostatic curves	20	CO3,CO4.
2	3	Estimation of steel weight, LCG, VCG of structures with simple configuration and distribution of steel weight.	-	CO1,CO2.
3	4	Tank disposition plan, Capacity calculation and Capacity plan.	15	CO3,CO4.
4	5	Launching calculations and launching curves.	15	CO3,CO4.
		Total	50	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Derett, D. R	Ship Stability for Masters and	Stanford Maritime
		Mates	
2	Rawson, K.J. and	Basic Ship Theory, Vol I & II	Longman
	Tupper E.		
3	Munro-Smith	Ships and Naval Architecture	Institute of Marine
			Engineers

Reference Books for further study

S. No.	Author	Title of Books	Publishers		
1	John P. Comstock	Principles of Naval Architecture	SNAME		
2	Baxter, B.	Naval Architecture Examples and	Charles Griffin & Co		
		Theory			
3	Thomas, Gillmer C.	Introduction to Naval Architecture	E & F.N. Spon		
4	Munro – Smith, R	Naval Architecture for the	Technical Press		
		Merchant Navy Exams			
5	Stokoe, E.A.	Reed's Naval Architecture for	Thomas Reed		
		Marine Engineers	Publisher Ltd.)		

6	Muckle. W	Naval Architecture for Maritime	Butter Worths
		Engineers	
7	Hogg, Robert S.	Naval Architecture and Ship	Institute of Maritime
		Construction	Engineers

(SB403) WELDING IN SHIP CONSTRUCTION

- 1. COURSE OBJECTIVES: The theory course content is framed to impart sufficient knowledge of general aspects of Welding in ship construction and to familiarize with different welding processes, design, defects and types of joints. It is essential that a technician involved in shipbuilding, ship repair industry should have a thorough knowledge of different welding processes, which plays vital role in fabricating different metals and non- metals. Hence an attempt has been made in Welding in ship construction to brief out different welding processes, welding processes, types of welding joints, etc.
- 2. PRE-REQUISITES: Knowledge of Physics and Chemistry.

				CILLIN	L .					
Semester	IV									
Course code & Periods/Week			Total	Examination Scheme						
course title	course title		(in hours)		Hours	Theory		Practical		Total
						Marks		Marks		Marks
SB 403	3	L	Т	Р	Η	TH	TM	TW	PR/OR	
Welding in	Ship	3	0	3	96	75	25	50	-	150
Construct	tion									

3. TEACHING AND EXAMINATION SCHEME:

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Identify the different variables associated with the welding processes.
- 2. Explain the different welding processes, procedures, Defects, application and safety involved.
- 3. Select the appropriate welding processes and tests.
- 4. Sketch the welding process and procedure.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	1	1	1	2	2	1	2
CO2	3	2	1	2	2	3	2	1	2
CO3	2	3	2	2	2	3	2	1	2
CO4	2	2	2	2	2	2	2	2	2

Relationship : Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

			Marks	Course Outcomes
UNIT	1:	INTRODUCTION TO WELDING & SAFETY	09	CO1,
	PF	RACTICES		CO2, CO3
1.1		Definition of Welding. Classification of different welding		
pro	cesses			
1.2		Advantages and Disadvantages of welding.		
1.3		Weldability of steel and carbon equivalent.		
1.4		Comparison of welding with respect to casting and riveting.		

1.5 Health and safety of the worker. Safe welding practices.		
UNIT 2: WELDING EQUIPMENTS & WELDING PROCESSES	21	CO1,
2.1 Gas welding process and equipment, Types of Welding Flames,	<u>~1</u>	- CO1, CO2,
		CO3,CO4
Gas Welding Technique: Leftward, Rightward and vertical, Mani		003,001
folding system for gas welding. Gas Welding: Advantages,		
Disadvantages & Applications.	_	
2.2 MMAW Process & Equipment, MMAW: Advantages,		
Disadvantages & Applications	_	
2.3 TIG Welding Process and Equipment, TIG Welding:		
Advantages, Disadvantages & Applications	_	
2.4 MIG Welding Process and Equipment, MIG Welding:		
Advantages, Disadvantages & Applications, Introduction to MAG Welding Process.		
2.5 Submerged Arc Welding Process and Equipment, Weld	-	
Backing, Submerged Arc Welding: Advantages , Disadvantages		
& Applications		
2.6 Types of welding electrodes (consumable and non consumable)	1	
2.7 Classification of electrodes, electrode coating.	-	
2.8 Selection of electrodes. Care and storage of electrodes		
2.9 Classification and coding of MS and low alloy steel electrodes:		
Indian System (IS), American (American AWS-ASTM) system		
UNIT 3: WELDING DEFECTS AND TESTING	18	CO1,
3.1 Cracks, incomplete penetration,		CO2,
3.2 Distortion, porosity and blowholes,		CO3,CO4
3.3 Poor weld bead appearance, spatter,		
3.4 Poor fusion, undercutting, inclusion and overlapping.		
3.6 Non-destructive testing like, Visual Inspection,		
3.7 Leak test, Radiographic test (X Ray),		
3.8 Magnetic Particle Inspection,		
3.9 Liquid Penetrant Test & Ultrasonic Inspection.		
UNIT 4: WELDING PROCEDURE, SPECIFICATIONS & WELDERS PERFORMANCE QUALIFICATION	18	CO1, CO2,
4.1 Need for Preheat treatment and post heat treatments of welds	`	- CO2, CO3,CO4
4.3 Destructive tests like Bend test (Free type), Tensile test,		000,00
Impact test & Hardness test (Brinell Hardness Test).		
a) Welding procedure Specification (WPS) Purpose and Constituents of	1	
writing of a welder procedure specification		
b) Welder's performance Qualification (WPQ) : Requirement of Welder	-	
Qualification and Names of codes for welder qualification.		
4.4 Different welding positions Representations: Flat, Horizontal,	1	
Vertical Overhead (For Plates Only)	_	
4.5 Welding symbols Representation.		
UNIT 5 SPECIAL APPLICATIONS OF WELDING & METAL		CO1,

CUTTING PROCESSES			CO2,
5.1 Spot welding		09	CO3,CO4
5.2 Use of bimetallic strips			
5.4 Under water welding Processes: TIG, MIG			
5.5 Oxyacetylene cutting, Plasma cutting, Arc Cutting.			
	Total	75	-

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Introduction to Welding & Safety Practices	08	09
2	Welding Equipments & Welding Processes	14	21
3	Welding defects and Testing	10	18
4	Welding Procedure, specifications & welders Performance qualification	10	18
5	Special applications of welding & metal cutting processes	06	09
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS:

No	Practical	Marks	COURSE OUTCOMES
1.	Introduction to welding equipment and safety		CO1, CO2,
2.	Striking of Arc		CO3,CO4
3.	Stringer Beading in flat, horizontal & vertical position.		
4.	Fillet joint in horizontal position.		
5.	Square Butt joint in flat position		
6.	Demonstration of Gas Welding & Gas Cutting.		
7.	Exposure to TIG, MIG, SAW Welding processes.		
	Total	50	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	O. P. Khanna	Welding Technology	Dhanpat Rai Publication
2	Raymond Sacks	Welding Principles & Practices	Bennett & Knight
			Publishing Company
3	S.V. Nadkarni	Modern Arc Welding	Oxford & IBH Publication
			Co. Pvt. Ltd.

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	American Welding	Welding Handbook	The Macmillan press
	Society (AWS)		Ltd.
2	J. A. Oates	Welding Engineers Handbook	D.B. Taraporevala
			Sons & Co. Pvt.
			Ltd.

(SB 404) MARINE ENGINEERING - I

1. COURSE OBJECTIVES: The theory course content is framed to impart knowledge to students regarding the general aspects of ship systems and related marine equipment. It is essential that as engineers involved in shipbuilding and ship have a thorough knowledge of pipeline system with fittings, type of valves and their selection, types of Marine pumps, boilers types, diesel engines working cycles and components. Having studied this subject, a student shall be able to choose material for pipes depending on ship systems for installation on board. Select valves for particular applications. Know various types of boilers in Marine usage, with mountings, accessories and basic installation features.

2. PRE-REQUISITES: Knowledge of Science and engineering fundamentals.

3. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course cod	Course code &		Periods/Week		Total	Examination Scheme				
course tit	course title		n hour	:s)	Hours	The	ory	Pra	actical	Total
				Marks		Marks		Marks		
SB404 MAH	RINE	L	Т	Р	Н	TH	TM	TW	PR/OR	
ENGG.	I	3	0	2	80	75	25	25	25	150

4.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Identify the various marine engineering components.
- 2. Understand the function of marine engineering components.
- 3. Explain the constructional aspects and working principle of marine engineering components.
- 4. Sketch the various marine engineering components

5. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	-	1	2	1	2	3	1	2
CO2	3	1	2	-	1	2	3	1	3
CO3	3	1	2	1	1	2	3	-	3
CO4	3	1	2	1	-	2	3	2	2

Relationship : Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

Unit	Marks	Course Outcomes
1 Valves and Fittings		
1.1 Types of valves used-on-board and their applications	18	CO1,CO2,CO
1.1.1Globe valve, gate valve, relief valve, quick closing valve, reducing		3,CO4
valve		
1.1.2 Storm valve, butterfly valve, ball valve and Cocks. SD and SDNR		
valve		

1.1.3 Valve chests, shipside valves and their requirements		
1.2Detailed sectional drawing of globe valve, gate valve and butterfly		
valve only.		
1.3Strainers, steam traps		
2 Fluid Pumps		C01,C02,C0
2.1 Types of pumps.	16	3,CO4
2.2 Characteristics and Marine applications of reciprocating, centrifugal, rotary pumps used on ships.		
2.3 Definition and terminology, impeller characteristics.		
2.4 Safety features, care and maintenance of pumps.		
2.4.1Testing of pumps, starting and stopping of pumps.		
3 Ship Systems		CO1,CO2,CO
3.1Engine room layout.	22	3,CO4
3.2 Ship piping systems i.e bilge and ballast, fresh water. fuel oil and		
lubrication oil systems, Compressed air piping starting air system		
(External circuit only- up to engine)		
3.3Hydrophore, steam piping, fire fighting mains.		
4 Marine boilers		
4.1 Classification of boilers in Marine applications. Fire tube and water	09	CO1,CO2
tube boilers		
4.1.2 Main, Auxilary, Exhaust gas, Composite boilers and Packaged		CO1,CO2,CO
boilers (detailed construction not included).		3
4.2 Mountings and accessories and safety features.		CO1,CO2
4.3Air supply and fuel supply.		CO1,CO2,CO 4
5 Compressors		
5.1 Types- Reciprocating – single and multistage, centrifugal and rotary.	10	C01,C02,C0
5.2 Constructional features of reciprocating compressor only.		3,CO4
5.3 Air receivers and mountings. Safety features.		
5.4 Applications of compressors.		

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies 8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No.	Торіс	Teaching Hours/Se mester	Marks
1	Valves and Fittings	12	18
2	Fluid Pumps	09	16

Directorate of Technical Education, Goa State

3	Ship Systems	14	22
4	Marine boilers	06	09
5	Compressors	06	10
		48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No.	Practical	Marks	Course Outcomes
1	To study pipeline fitting such as Elbows, Tees, Unions, Sockets, Reducers, Bulkhead/Deck piece, Flange joint, welded joint, different jointing materials and gland packing. Nomenclature of pipes.		CO1, CO2, CO3, CO4
2	To dismantle and assemble various types of valves i.e. globe valve, non return valve, butterfly valve, quick closing valve.		
3	To dismantle assemble & study principle of working of reciprocating, centrifugal, rotary & semi rotary pumps		
4	To study boiler mountings		
5	Study of reciprocating air compressor.		
	Total	25	

10. LEARNING RESOURCES

Text Books

Sr.No.	Author	Title of book	Publication							
1	D.A. Taylor	Introduction to Marine Engg	Butterworths, 1983, The University press, Cambridge.							
2	David D Smith	Marine Auxiliary Machinery	Butterworths, London.							
3	H. James Milton & M. Roy Leach	Marine Steam boiler	(Butterworths)							

Reference Books for further study

Sr.No.	Author	Title of book	Publication
1	C. C. Pounder	Marine Diesel Engines	Butterworths,
			London.
2	Harrington	Marine Engineering	Sname, New York.

(SB405) SHIP CONSTRUCTION TECHNOLOGY

1. COURSE OBJECTIVES: The theory course content is framed to impart knowledge of ship's structures to students. It is essential that Engineers involved in shipbuilding are able to manage the jobs during construction of a ship. He should be acquainted with all practical technical know-how of fabrication and alignment of various ship structures. The course content has been so designed that the students acquire knowledge and skill in execution of projects pertaining to structures in shipbuilding. Having studied this subject, students should be able to know nomenclature used to describe ship structural components.

2. **PRE-REQUISITES:** Knowledge of Engineering fundamentals.

3. TEACHING AND EXAMINATION SCHEME: Semester IV Course code & Periods/Week Total Examinatio course title (in hours) Hours Theory Pr

Course code &	Periods/Week		Total	Examination Scheme					
course title	(in hours)		Hours	Theory		Practical		Total	
					Ma	rks	Μ	[arks	Marks
(SB405) SHIP	L	Т	P	Н	TH	TM	TW	PR/OR	
CONSTRUCTION	3	0	2	80	75	25	25	-	125
TECHNOLOGY									

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Identify the various components of ship's structure.
- 2. Understand the function of structural components.
- 3. Explain the constructional aspects of ship's structure
- 4. Sketch the various components of ship's structure.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	-	1	1	1	1	1
CO2	3	1	2	-	1	2	2	2	2
CO3	3	1	2	1	1	2	2	2	2
CO4	3	2	1	2	1	2	2	2	2

Relationship : Low-1 Medium-2 High-3 6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN:

M = Marks Thr = Teaching hours CO = Course Objectives		
Unit	MAR KS	COURSE OUTCO
	N O	MES
UNIT 1: SHIP STRUCTURE		CO1 CO2
1.1 General arrangement and Mid-ship sections of a Bulk	06	CO4
Carrier.		
1.2 General arrangement and Mid-ship sections of a Tanker.		

1.3 General arrangement and Mid-ship sections of a Container ship.		
UNIT 2: BOTTOM, SIDE SHELL, DECK AND BULKHEAD		CO1,CO2,
STRUCTURE		CO3,CO4
2.1 Bottom structure	30	
2.1.1 Single bottom construction.	50	
2.1.2 Double bottom construction – Keels, types of floors, Girders		
2.11.2 Double bouoli construction - freeds, types of froots, officers		
2.1.3 Bottom frames – transverse and longitudinal framing.		
2.1.4 Bilge keel.		
2.2 Side shell and Decks		
2.2.1 Transverse and longitudinal framing, side transverses.		
2.2.2 Deck transverse/ beams, Deck longitudinals, stringers, deck girders.		
2.2.3 Cargo hatches.	-	
2.3 Bulkheads	_	
2.3.1 Transverse and longitudinal.		
2.3.2 Ordinary Stiffened Bulkhead.		
2.3.3 Corrugated Bulkhead.		
2.3.2 Pillars.		
UNIT3: FORE END, AFT END, ENGINE ROOM AND DECKHOUSE STRUCTURE		
3.1 Fore End structure.	24	CO1,CO2,
3.1.1 Stem-Normal raked bow, stem bar, panting stringers, breast		CO3,CO4
hooks, Deep floors.		
3.1.2 Chain locker.		
3.1.3 Bulbous bow.		
3.1.4 Hawse pipe.		
3.1.5 Bow thruster tunnel.		
3.2 Aft End structure.		
3.2.1 Cruiser stern.		
3.2.2 Transom stern.	-	
3.2.3 Stern frames for different types of rudders.	-	
3.2.4 Shape of propeller aperture.	-	
3.2.5 Types of rudders, rudder trunk, steering gear flat.	-	
3.2.6 Stern tube, A-bracket and Bossing.	-	
3.3 Engine room structure- engine girders, platform decks.	4	

3.4 Deckhouse and superstructure construction including engine		
casing.		
UNIT 4:CLOSING APPLIANCES		CO1,CO2,
4.1 Construction of doors.	09	CO4
4.2 Windows and scuttles.		
4.3 Hatches.		
4.4 Construction of skylights, ventilator covers.		
UNIT 5:DECK MACHINERY ARRANGEMENT & LAYOUT		CO1,CO2,
5.1 Mooring arrangements.	06	CO4
5.2 Masts.		
5.3 Life boats launching arrangements.		
5.4 Access ladders and Gangways.		
Total	75	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies. **8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN:**

Unit No	Unit	Number of lectures	Marks
1	Ship Structure	04	06
2	Bottom, Side Shell, Deck and Bulkhead Structure	19	30
3	Fore End, Aft End, Engine Room and Deckhouse Structure	16	24
4	Closing Appliances	05	09
5	Deck Machinery arrangement & Layout	04	06
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS:

No	Practical	Marks	COURSE
			OUTCOMES
1	Sketching & labeling of Mid-ship section of a Bulk Carrier,		CO1,CO2,
	tanker and Container ship.		CO3,CO4
2	Sketching & labeling of Single bottom construction details.		
3	Sketching & labeling of Double bottom, types of floors &		
	their application.		
4	Sketching & labeling of Bulkheads – Plain ordinary,		
	Corrugated, transverse, longitudinal, stiffening		
	arrangement.		
5	Sketching & labeling of Fore-peak structure - Stem bar,		
	Pantingstringers, Breast hooks and deep floors.		
6	Sketching & labeling of Aft structure – Cruiser stern,		
	Transom stern.		
	Total	25	

10. LEARNING RESOURCES Text Books

I CAL DU	UIS		
S. No.	Author	Title of Books	Publishers
1.	D.J.Eyres	Ship Construction	Elsevier
2.	D. A. Taylor	Merchant Ship Construction	Buttersworth Hienemann
3.	R. Taggart	Ship Design & Construction	SNAME

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1.	Pursey	Merchant ship construction	Brown, son & Ferguson
2.	Reed's series	Ship Construction for Marine students	Thomas Reed
3.	Hogg.	Ship Construction for Marine Engineering	The Institute of Marine Enginners, London

(CC501) ENTREPRENEURSHIP DEVELOPMENT

1. COURSE OBJECTIVES: Student will able to start his own venture with all fundamentals of business. Today Entrepreneurship is given importance by the government to bring the youth of our country to overcome the problem of unemployment and bring them in the main stream of global business to strengthen Indian economy by Make in India philosophy. Government has announced various financial schemes for young youth and women to support them for setting up an enterprise. To fulfill this, youth are to be prepared for setting an enterprise. The students undergoing this course will be develop entrepreneurial traits and confidence within themselves and choose entrepreneurship as a career to brighten their future.

2. **PRE-REQUISTES**: Fundamentals of Mathematics.

Course Code	Periods/		Total	Examination Scheme					
& Course Title	Week (In Hours)		Hours	Theory Marks		Practical Marks		Total Marks	
CC501 Entrepreneurship	L	Т	Р	Н	-	-	PR/OR	TW	25
Development	-	-	2	32	-	-	-	25	25

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

- CO1: List the terms associated with Entrepreneurship Development.
- CO2: Explain the terminologies and procedures involved in Entrepreneurship Development.
- CO3: Identify legal implications for Entrepreneurs.
- CO4: Develop the project report for new enterprise.

5. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	-	-	-	2	3	2	1	1
CO2	1	-	-	-	1	3	2	1	1
CO3	-	1	2	-	-	-	2	1	1
CO4	3	2	2	-	2	-	2	1	1

Relationship : Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS

Unit	Marks	Course
		outcomes
1 Introduction to Entrepreneurship Development	3	CO1,CO2,
1.1 Introduction to Entrepreneurship Development (EDP): Need		CO3,CO4
1.2 Entrepreneur definition, Types of Entrepreneur,		
Characteristics of entrepreneur and entrepreneurship		
1.3 Enterprises: Micro, Small and Medium Enterprises (MSME), Service industry, Manufacturing Industry, Franchises and Start up.		
1.4 Organisations: Sole proprietorship, Partnership, Public, Co-operative Society.		
2. Identification of business opportunity		CO1,CO2,
2.1 Business ideas-	5	CO3,CO4
Exploring business ideas in terms of marketability, technical	-	
feasibility, financing and authorities		
2.2 Business terms: -		
Clients, vendors market description, demand, supply, banking, &		
non-banking, financing companies, Loans of various types, GST,		
peers Promoters, Lenders, Consortium.		
2.3Government Departments: -		
IDC, EDC, Civic Body, Pollution Control department.		
3. Market Research		CO1,CO2,
3.1 Data Collection: -	3	CO3,CO4
Data collection of Business idea such as Number of players,		
Total demand, Total supply,		
3.2 Analysis of Data: -		
Analysis of data and projection of data with respect to		
various factor (such as GDP, Climate etc through case studies).		
3.3 Questionnaire: -		
Preparing a questionnaire for business idea to assess		
business opportunity.		
4. Legal Aspect		CO1,CO2,
6.1 Legal Financial Term: -	8	CO3,CO4
Know the various terms such as Resources, Assets, Liabilities,		
Advances, Depreciations, Investments, Fixed Capital, Working		
Capital (cash credit), Employee Cost, Miscellaneous Expense,		
Other Income, Profit & Loss Statement, Cash Flow Analysis, and		
Balance Sheet.		

6.2 Legal Aspects: -		
Procedure for Registration with various government agencies,		
GST, PAN, Slab of Income Tax.		
Difference in use of electricity, water & LPG for domestic purpose		
and industrial applications.		
6.3 Business Analyses: -		
1) Swot Analysis		
2) Break – Even Analysis		
5. Project Report		CO1,CO2,
5.1 Need for project report, Importance of Project report,	6	CO3,CO4
Scope of project report: Economic aspects, Technical aspects,		
Financial aspects, Managerial aspects, Production aspects.		
List the contents of a project report.		
Proforma of a project report which includes: -Introduction,		
Schemes, Profitability and Projections, Infrastructure, Break Even		
Point, Names and Addresses of suppliers, remarks.		
5.2 Project Profile: -		
Project appraisal criteria: - Technical feasibility, Financial		
feasibility, Economic viability, Commercial viability, Managerial		
competency, Political and Labour considerations		
5.3 Scope of Business: -		
Further scope with Capital infusion, Exit plan Analysis.		
Total	25	

7. COURSE DELIVERY:

Videos / Lectures/ Practicals /Expert lectures / Industry visits

8. SPECIFICATION TABLE FOR PRACTICALS

Unit No.	Торіс	Teaching Hours/ Semester	MARKS
1	Entrepreneurship Development	4	3
2	Identification of business opportunity	6	5
3	Market Research	4	3
4	Legal Aspect	10	8
5	Project Report	8	6
TOTAL		32	25

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICAL HOURS

No	Classroom Assignments	Marks
1.	Prepare a Case Study on leading enterprise	
2.	Prepare a Case Study on small scale unit	
3.	Prepare a report on various government schemes for startup.	
4.	Prepare SWOT analysis for a new business idea.	
5.	Prepare Project Report for a new business idea.	
	Total	25

10. LEARNING RESOURCES

S.No.	Author	Title of Books	Publisher			
1.	Sharad Jawadekar, Shobha Dodlani,	Business entrepreneurship	Suvichar prakashan mandal, pune,			
2.	S.S. Khanna	Entrepreneurship development	S. Chand & Co. Ltd, New Delhi,			
3.	Vasant Desai	Management of small- Scale Industry in India	Himalaya Publishing House			
4.	Dilip Sarwate	Entrepreneurial development Concepts and practices	Everest Publication House, Pune			
5.	CB Gupta and P Srinivasan	Entrepreneurship Development	S. Chand and Sons, New Delhi			

(TR501) INPLANT TRAINING PHASE I

1. COURSE OBJECTIVES: The training imparted through this course should be such that the theory learned during first 4 semesters of Shipbuilding Engineering is linked with the Industrial practices and the outcome of the inplant training should aid in understanding the subjects of further semesters. The objective of the training is to correlate theory and shipbuilding practices. Through training, the students will be able to get hands on experience in the various job activities associated with ship construction and obtain practical knowledge and experience in the installation, operation and maintenance of marine machinery. The students will be exposed to industrial environment, obtain experience in working under factory discipline, associate with workers and understand their psychology and work habits, and get familiarised with various materials, structural members of ship, processes and shop floor practices.

2. PRE-REQUISITES: Knowledge of introductory subjects of Naval Architecture, Marine Engineering and ship structure.

3. TEACHING AND	EXAMINATION	SCHEME:
-----------------	-------------	---------

Semester	V								
Course and a		Total		Examination Scheme					
Course code & course title		Weeks	Term-work	Practica	Total Marks				
(TR501) Inplant Training Phase I		21 Weeks	Presentation	Daily Dairy	Report	Orals			
			50	50	50	50	200		

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

TR501.CO1: Relate and reinforce knowledge of theory concepts learnt in earlier semesters withpractical work at industry.

TR501.CO2: Describe clearly the shipbuilding activities/jobs performed by them during the training.

TR501.CO3: Prepare a report and give presentations detailing all the jobs activities performed at theyard and the specific projects undertaken by them.

TR501.CO4: Distinguish various machines, equipments, tools, software etc, under the guidance andmentorship of industrial personnel.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	1	2	2	2	3	1	2
CO2	2	-	-	1	1	1	2	1	1
CO3	2	-	1	-	-	1	2	-	1
CO4	2	-	-	1	-	-	2	1	2

Relationship : Low-1 Medium-2 High-3

6. DETAILED CONTENTS:

Unit	СО
UNIT 1: SHIP STRUCTURE	C01,C02,
1.1 Basic structural members of Ship	CO3, CO4
1.2 functions of structural members of Ship	
UNIT 2: LOFTING	
2.1 Preparation of offset	
2.2 Fairing of full scale lines	
2.3. Preparation of templates.	
UNIT 3:STEEL PREPARATION & FABRICATION	
3.1 Plate preparation	
3.1.1 Shot blasting	
3.1.2Priming	
3.1.3 Marking	
3.1.4 Cutting of plate using pug cutting machine	
3.1.5 Edge preparation	
3.2 Use of grinding wheel	
3.3Plate bending	
3.4 CNC cutting.	
3.5 Fabrication	
3.5.1Welding	
3.5.2Arc welding	
3.5.3 Gas welding	
3.5.4 Erection of sub assembly	
3.5.5 Structural components	

3.5.6 Preparation of skids	
3.5.7 Alignment of sub-assemblies.	_
3.5.8Block Fabrication.	_
	_
UNIT 4:OUT-FITTING	
4.1Pipe-fabrication,	
4.1.1Preparation of templates	
4.1.2 System assembly	
4.1.3 Pressure testing	
4.1.4commissioning of piping system.	
4.2Rudder installation	
4.3Propeller mounting	
4.4Chock fasting	
4.5 Shaft alignment.	
4.6 Machinery installation	
4.7 Fabrication of machinery seating	
4.8 Machinery alignment	
4.9 Testing and commissioning.	
UNIT 5: LAUNCHING & MATERIAL HANDLING	
5.1Side Launching	
5.2 End launching	
5.3 Balloon launching	
5.4 Dock launching.	
5.5 Material handling	
5.5.1Types of Cranes,	
5.5.2 Trolleys,	
5.5.3Pallets,	
5.5.4 Winches and other accessories.	

7. DAILY DAIRY: The students are required to maintain a daily diary as a day to day record of their attendance at the factory, indicating clearly the activities/jobs performed by them during the day. End of the training the daily dairy needs to be submitted for evaluation by the faculty.

8. REPORT: Doing the daily diary, the students will prepare a report detailing all the jobs activities performed at the yard and in full detail the specific projects undertaken by them. The report will also cover the layout of the yard, facilities and infrastructure, types of ships under construction, etc. The report is to be in typed format complete with illustrations and drawings.

9. GRADING

Grade	Marks
А	>270
В	Between 240 to 269
С	Between 210 to 239
D	Between 180 to 209
Е	Between 150 to 179
F	Between 120 to 149
Fails	<120

(SB 601) MARINE ENGINEERING - II

1. COURSE OBJECTIVES: The theory course content is framed to impart knowledge and upkeep of diesel engines and other related marine equipment's. Engineers involved in shipbuilding, ship repairs, and operation, are required to have a thorough knowledge of diesel engines, steam turbine, marine gears, stern gears. Having studied this subject, student shall be able to prepare sketches of diesel engine components and trace system integral with diesel engine. They should understand principle of operation, constructional details of steam turbines. They should study types of stern gear for inland & ocean going vessels. Engineers involved in shipbuilding should understand various types of deck machinery drives and their positions and installations. Due importance has also been given to fire protection system, ventilation, air-conditioning and refrigeration system. They should understand basic concepts and applications of Electrical Machinery. They should know different types of steering gear

i.e. mechanical, hand hydraulic, Electro hydraulic.

2. PRE-REQUISITES: Marine engineering I and Introduction to Thermodynamics.

Semester	VI									
Course code &		Periods/Week		Total	Examination Scheme					
course title		(in hours)		Hours	Theory		Practical		Total	
					Marks		Marks		Marks	
(SB 601) Marine		L	Т	P	H	TH	TM	TW	PR/OR	
Engg	II	3	0	2	80	75	25	25	25	150

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB601.CO1:Identify and distinguish various marine engineering systems.

SB601.CO2: Understand the function of marine engineering systems.

SB601.CO3: Explain working principle of different marine engineering

systems.

SB601.CO4: Sketch the various marine engineering systems.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	-	1	2	2	2	3	1	2
CO2	2	2	2	1	2	2	3	1	3
CO3	2	2	3	1	2	2	3	1	3
CO4	2	2	3	1	-	2	3	2	2

Relationship : Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives]	
Unit	Μ	Thr	CO
1 DIESEL ENGINES	32	20	
1.1 Introduction to marine I/C Engines and its applications &			CO1
specifications			CO2
1.2 Diesel Engine Systems Internal circuits of engine cooling			CO3
system, engine fuel oil system, engine lubricating oil system.			CO4
1.3 Scavenging, super-charging and turbochargers, Pulse and constant			
pressure turbocharger			
1.4 Principles of combustion.			
1.5Basic features and simple sketches of the principal components of			
diesel engines, e.g cylinder head, cylinder liner, piston and piston			
rings, cross-heads, connecting rods, camshafts with drives, crank			
shafts, tie rods, bed-plate, main bearing, top end and bottom end			
bearings and thrust bearing.			_
1.6 Simple governor			_
1.7Safety features used in diesel engine- High cooling water			
temperature, low lub oil pressure, engine overspeed and			
crankcase mist detector, , Crankcase relief valve.			
	16	10	
2 VENTILATION, REFRIGERATION AND AIR	16	10	CO1
CONDITIONING			CO2
2.1 Ventilation-Natural and forced.			CO3
2.2 Principle of vapour compression refrigeration cycle.			CO4
2.2.1Basic features and functions of equipment involved i.e			
compressor, condenser, expansion valve and evaporator			

2.3 Air-conditioning. Provision chambers. Brine refrigeration system,			7
and cargo hold conditioning.			
3 DECK MACHINERY	12	08	CO1
3.1Types of drives- electrical, electro-hydraulic.			CO2
3.2 Deck machinery positions and installation.			CO3
3.3Description and working principles of anchor windlass, cargo and			CO4
mooring winches, cargo handling crane, capstans, and hatch cover			
operating machinery with simple sketches.			
4 STEERING GEAR	06	04	
4.1Types of steering gear-mechanical, hand hydraulic, electro			
hydraulic and rotary vane type their construction and operation.			
4.1.1 Control system and statutory requirements.			
5 ELECTRICAL MACHINERY ONBOARD	09	06	_
5.1 Basic concepts and applications of Electrical Machinery –			
alternators, motors, transformer.			
5.2 Main switch board, and distribution system, emergency source of power, preferential tripping, protective devices.			
5.3Shore connection and inter lock.			
5.4 Introduction to Automation.			1
Total	75	48	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No.	Торіс	Teaching Hours/Semester	Marks
1	Diesel Engines	20	32
2	Ventilation, Refrigeration and Air conditioning	10	16
3	Deck Machinery	08	12
4	Steering Gear	04	06
5	Electrical Machinery Onboard	06	09
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No.	Practical	Marks	CO
1	To prepare sectional sketches of important diesel engine components- bed plate, cylinder liner, piston, and cylinder head. Line sketch of engine structure		CO1 CO2 CO3
2	To prepare line sketches of fuel oil, lubricating oil, cooling water and starting air circuits from an actual diesel engine		CO4
3	To prepare sketches of natural and forced draft vents.		
4	To prepare line sketch of vapour compression refrigeration system with equipment.		
5	To visit inland vessel/ocean going vessel and prepare deck machinery layout, physical arrangement of steering gear		
	Total	25	

10. LEARNING RESOURCESText

Books

Sr. No.	Author	Title of book	Publishers
1	D.A. Taylor	Introduction to Marine Engineering	Butterworths.
2	David D. smith	Marine Auxilary Machinery	Butterworth,
3	Dirnie, S-G	Marine Steam Engine & Turbines	Butterworth,

Reference Books for further study

Sr.No.	Author	Title of book	Publishers
1	C.C. Pounder	Marine Diesel Engines	Butterworth, London
2	Harrington	Marine Engineering	SNAME – New York

(SB 602) SHIP REPAIR ENGINEERING

- 1. COURSE OBJECTIVES: The theory course content is framed to impart sufficient knowledge of activities in present day Ship repair yard. The course content is designed to meet the needs of the present day ship repair yard. The engineer is trained: To know how vessels are berthed and dockedwhen brought for repair work. To identify the areas needing repairs. To acquaint themselves with various aspects of survey carried out when vessel is at the berth and in the dry dock. To know the regular maintenance aspects of a vessel and how it is maintained under class.
- 2. PRE-REQUISITES: Knowledge of Ship construction technology and Marine Engineering.

3. TEACHING AND EXAMINATION SCHEME:

Semester VI									
Course code &	Peri	iods/V	Veek	Total		Exan	nination	n Scheme	
course title	(iı	n hou	rs)	Hours	The	ory	Pra	actical	Total
					Marks		Marks		Marks
(SB 602)	L	Т	P	H	TH	TM	TW	PR/OR	
Ship Repair	4	0	2	96	75	25	25	25	150
Engineering									

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- **SB602.CO1:** List the activities required in a ship repair yard
- **SB602.CO2:** Explain methods of survey and repairs to ships structure, machinery and equipment and recognize safety aspects.
- **SB602.CO3:** Analyse the deficiencies needing repair to ships structure, machinery and equipment.

SB602.CO4: Apply the various repair techniques for ships structure, machinery and equipment.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	1	1	1	-	1	2	-	2
CO2	2	2	2	1	2	3	2	-	3
CO3	2	2	3	2	2	2	2	-	3
CO4	1	2	3	2	2	3	2	-	3
Relationship : Low-1 Medium-2 High-3									

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN:

M = Marks Thr = Teaching hours CO = Course Objectives]	
Unit	Μ	Thr	CO
UNIT 1 SHIP REPAIR FACILITIES, ACTIVITIES AND SERVICES	09	08	CO1 CO2
1.1 Docking systems – Description, comparison			CO3
1.2 Docking plan details and significance			
1.3 Services to ships in dock			
1.4 Supporting repair shops			
1.5 Nature of jobs involved in ship repairs			
UNIT 2 REPAIRS TO HULL AND UNDER WATER EQUIPMENT, AND SAFETY ASPECTS	21	18	CO1 CO2
2.1 Repairs to Hull			CO3
2.1.1Hull surveys and types of defects			CO4
2.1.2 Methods of gauging, areas of maximum wastage, areas susceptible			
to erosion, buckling, dents, cracks.			
2.1.3 Preparation for hull repairs, cleaning, gas freeing, ventilation,			
access, staging, additional supports			
2.1.4 Procedure for repairs, sequence of gas cutting, fitting and welding.			
Fitting doublers and inserts.			
2.1.5 Marking, use templates for odd size and shape.			
2.1.6 Temporary repairs, cement box.			
2.1.7 Testing of repaired areas and compartment.			
2.2 Repairs to Under water equipments			
2.2.1Withdrawal of propeller and tail end shaft. Propeller drop			1
measurement. Inspection and repairs of propeller, shaft, stern tube			
and A-bracket bearings, Static balancing of propeller			
	I	1	<u> </u>
	1		
---	-------------	----	------------
2.2.2 Rudder drop and bearing clearance measurement. Rudders removal, repairs and refitting. Repairs of Rudder stock, pintles			
ushes.	,		
2.2.3 Ranging anchors and cables - Inspection, gauging, acceptable levels, rearrangement. Repair of chain links, shackles and anchors.			
2.2.4 Sea chest and connections.			
2.2.5 Underwater fittings. Anodes cathodic protection.			
NT 3. REPAIR OF HULL FITTINGS, SAFE EQUIPMENT, HULL PROTECTION A INSULATION	TY 27 ND	18	C01 C02
Repairs to Hull fittings			CO3 CO4
3.1.1 Load line survey and repairs. Hatch covers, watertight doors, scuttles, air pipes, freeing ports, railing, and bulwark.			
3.1.2 Testing water tightness of closing appliances.			
3.1.3 Ventilators, scuppers, cargo gear inspection, repairs and testing.			
3.1.2 Pipe line repairs. Use of blanks and spectacle flanges. Making template and Fabrication of pipe. Expansion joints, clamps, pip testing.	e		
Repairs to Safety Equipments			
3.2.1 Safety equipment surveys.			
3.2.2 Repairs of fibre glass boats			
3.2.3 Testing CO2 system by compressed air			
3.2.4 Maintenance and testing of fire mains, hydrants, hoses and nozz			
Hull protection and insulation	lles		_
1	les		_
3.3.1 Methods of descaling. H.P. water wash, sand blasting	les		-
1	les		_
3.3.1 Methods of descaling. H.P. water wash, sand blasting			-
 3.3.1 Methods of descaling. H.P. water wash, sand blasting 3.3.2 Chipping Standards of surface finish. 3.3.3 Painting scheme for underwater hull, shipside, deck, cargo hold, 			

UNIT 4. GENERAL REPAIR METHODS OF ENGINE ROOM MACHINERY, AND SAFETY ASPECTS	12	14	CO1 CO2
4.1 Maintenance schedule.			CO3 CO4
4.2 Appreciation of engineering requirements for general maintenance			
and repairs of the Main Engine.			
4.3 Appreciation of engineering requirements for general maintenance and repairs of the Auxiliaries such as Generators, Boilers and Boiler mountings.			
4.4 Repairs of other reciprocating and rotating machineries.			
4.5 Repairs to Heat exchangers.			
UNIT 5. OFFICE PROCEDURES AND COSTING.	06	06	CO1
5.1Defect list, quotation, job order and work done certificate.			CO2
5.2 Records of repairs and maintenance - Shell expansion and structural plans			CO3
5.3 Costing cost components.			
5.4 Estimation of material, manpower and time requirement.			
5.5 Bill preparation			
Total	75	64	

The Course will be delivered through lectures, class room interactions, exercises and case studies.

8. Specification table for theory/ macro-lesson plan

Unit No	Unit	Number of lectures	Marks
1	Ship Repair facilities, activities and services	08	09
2	Repairs to Hull and Under Water Equipment, and Safety Aspects	18	21
3	Repair of Hull fittings, Safety Equipment, Hull protection and Insulation	18	27
4	General Repair methods of Engine Room Machinery, and Safety Aspects	14	12
5	Office Procedures and Costing.	06	06
	Total	64	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks	CO
1	Skatching layout of a ship rapair yard and labeling the various		CO1
1	Sketching layout of a ship repair yard and labeling the various facilities.		CO1 CO2
2	Sketching and describing Docking Plan of a ship showing necessary		CO3
	details.		CO4
3	Sketching and describing hull repairs details- bottom shell/ side shell;		
	plate/ section renewal and welding.		
4	Propeller shaft inspection, withdrawal, reconditioning and refitting -		
	listing out chronological events and methods.		
5	Anchor and cables inspection and repairs – Equipment number, chain		
	size, sketching kenter shackle.		
6	Painting scheme for a ship – describing a painting scheme for different		
	areas of ship with DFT.		
	Total	25	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	D. Benkovsky	Ship Repair Technology	MIR Publications
2	S.G.Khare	Hull Repairs	Society for Industrial & Technical Education in Goa.

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	R. Taggart	Ship Design & Construction	SNAME
2	Hogg.	Ship Construction for Marine	The Institute of Marine
		Engineering	Enginners, London
3	D. A. Taylor	Introduction to Marine	Butterworth-Heinemann
		Engineering	
4	H. D. McGeorge	Marine Auxiliary Machinery	Butterworth-Heinemann

(SB603) SHIP DRAWING & CALCULATIONS

1. COURSE OBJECTIVES: The course content is designed to enable the students to perform Ship Drawing calculations. The course content is designed to enable the students to perform intact stability calculation, and floodable length calculations. It also enables students to understand the mid-ship section, design process, and determine scantlings from classification society rules. The student will be also able to perform longitudinal strength calculation.

2. PRE-REQUISITES: Knowledge of Maths, Science, Basic ship theory

3. TEACHING AND EXAMINATION SCHEME

Semester	VI											
Course cod	e &	Per	Periods/Week		Total	Examination Scheme						
course tit	le	(i	n houi	rs)	Hours	Theory Marks		Practical Marks				Total Marks
SB603 Sh	ip	L	Т	Р	Н	TH	TM	TW	PR/OR			
Drawing Calculatio		1	-	6	112	75	25	25	25	150		

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able

to: SB603.CO1: Interpret the techniques for ship drawing &

calculations SB603.CO2: Calculate the properties relating

mechanics of ships.

SB603.CO3: Apply Classification Society Rules to ship drawing & calculations

SB603.CO4: Sketch the ship drawing curves.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	2	1	1	2	2	2	-
CO2	2	2	2	1	1	2	3	2	1
CO3	3	2	2	3	2	3	3	3	1
CO4	3	3	3	3	1	3	3	3	2

Relationship : Low-1 Medium-2 High-3

M = Marks Thr = Teaching hours CO = Course Objectives]	
Unit	Μ	Thr	CO
1 CROSS CURVES OF STABILITY	18	03	CO1
1.1 Introduction to Cross curves.			CO2
1.2 Calculation and drawing of cross curve.			CO3
1.3 Features of Cross curves and its applications.			CO4
2 STATICAL STABILITY CURVE FROM CROSS CURVES	06	01	CO1
2.1 Drawing of statical stabilitycurve and calculation of initial meta-			CO2
centric height.			CO3
2.2Dynamical stability			CO4
3 MID SHIP SECTION CALCULATIONS & DRAWING	15	04	CO1
3.1 Introduction to classification society.	10	•••	CO1
3.2 Application of classification rules for ship structure.			CO3
3.3 Calculation of hull girder section modules.			CO4
3.3.1 Check on mid- ship section modulus.			-
3.3.2 Stresses induced on deck and keel.			
4 FLOODING CALCULATIONS	21	04	CO1
4.1Introduction to subdivision and floodable length curves.		••	CO2
4.2Determination of draft, list, trim and stability after flooding for vessels of simple configuration.			CO3 CO4
4.3Calculation on subdivision and floodable length.			-
4.4Drawing of floodable length curves.			
5 STRENGTH CURVES	15	04	CO1
5.1 Introduction to strength curves.			CO2
5.2Longitudinal strength calculation.	1		CO3
5.3Cargo and hull weight distribution.			CO4
5.4Load curve, shear Force and bending moment diagrams.			1
Total	75	16	

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Cross curves of stability	03	18
2	Statical stability curve from cross curves	01	06
3	Flooding calculations	04	15
4	Mid ship section drawing	04	21
5	Strength curves	04	15
	Total	16	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Number of	Marks	CO
		lectures		
1.	Development of Cross curves of stability	30		CO1
2.	Carrying out Flooding calculations	18		CO2
3.	Development of Mid ship section drawing	30		CO3
4.	Construction of Strength curves	18		CO4
	Total	96	25	

10. LEARNING RESOURCESText

Books

S. No.	Author	Title of Books	Publishers
1	Rawson, K.J. & Tupper.	Basic Ship Theory Vol.1 & 2	Longman
2	Edward V. Lewis	Principles of Naval Architecture	SNAME
3	D.J. Eyres.	Ship Construction	Butterworth Heinemann
4	Rawson, K.J. & Tupper.	Basic Ship Theory Vol.1 & 2	Longman

Reference Books for further study

S. No.	Author	Title of Books	Publishers		
1	Baxter, B.	Naval Architecture Examples and Theory	Charles Griffin & Co		
2	Taggart	Ship Design and Construction	SNAME		
3	NA	Rules for Building and Classing Steel vessels	American Bureau of Shipping		
4	NA	Classification of Ship-Rules and Regulation	Lloyd's Register of Shipping.		

(CC 602) BUSINESS COMMUNICATION

1. COURSE OBJECTIVES:

The students will able to:

- 1. use speaking, writing and presentation skills to communicate effectively.
- 2. develop business etiquettes, manners, grooming and improve personal appearance
- 3. improve non-verbal forms of communication.

2. TEACHING AND EXAMINATION SCHEME

SemesterVICourse code &	Perio	ods/W	eek	Total	otal Examination Scheme						
course title	(in hours)		Hours	Theory Marks		Practical Marks		Total Marks			
(CC602) Business	L	Т	P	Н	TH	TM	TW	PR/OR			
Communication	-	-	2	32	-	-	25	25	50		

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC602.CO1: Apply principles of effective communication in business environment

CC602.CO2: Use ICT in business communication effectively

CC602.CO3: Demonstrate soft skills required in business environment

CC602.CO4: Prepare Technical Writing for various functions of business communication.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	0	1	0	1	2	2	0	1
CO2	2	2	2	1	2	2	3	1	2
CO3	2	2	2	1	2	2	3	1	2
CO4	1	1	1	1	2	3	3	0	3

Relationship : Low-1 Medium-2 High-3

M = Phr = Practicals CO = Course Outcomes Marks hours			
Unit	Μ	Phr	СО
1 COMMUNICATION SKILLS AT WORKPLACE		04	
 COMMUNICATION SKILLS AT WORKPLACE Principles of communication in business Importance of communication in a business organization, types of communication (formal and informal Internal and External Communication), Channels of communication: Vertical, Horizontal, Diagonal, Grapevine Modern Office technology for communication: email communication and sending text (etiquettes, components, tips for writing effective emails, spellcheck), internet and use of social media for work (to communicate, search for information about suppliers, specifications, networking, quick feedback, e-commerce, video conferencing) 		04	CO1 CO2 CO3 CO4
 2 SEMINARS 2.1 Organization of seminars and workshops Organizers role: planning, objectives, topic selection, planning the date, time, venue, creating event organization material: creating facebook page, WatsApp group, invitations, advertisement on pamphlet, hand-outs, signage, name badges, registration form, press note, inviting key note speaker, schedule 2.2 Presentation Speakers role: Gathering relevant material, organization of the material, knowing the occasion and audience, preparing handouts for distribution, time management, ,interaction with audience, non-verbal communication. (Checklist of significant aspects of oral presentation to be provided) 2.3 Role of audience Audience's role: Listening effectively and asking relevant 		06	CO1 CO2 CO3 CO4
questions, note taking			
3 TECHNICAL WRITING 3.1 Reports Understanding objective report writing, types of reports,		10	CO1 CO2
parts of a formal report, illustrations inspection reports: procedure and format, Project Report			CO3 CO4
3.2 Business letters]

Sales letters: parts of sales letter complaint letters: elements of a complaint letter adjustment letters: elements of an adjustment letter			
3.3 Tenders procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting advertisement for tender.			
3.4 Generic notices, notice for meetings: purpose, format of notice for meeting, agenda, quorum and writing minutes			
4 JOB INTERVIEWS		06	
4.1 Job application and resume draft job application and resume, draft letter of acceptance and cold contact letter			CO1 CO2 CO4
4. 2 Job interviews preparing for job interview, guidelines on facing job interviews, mock interviews			
5 SOFT SKILLS		06	
5.1Business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes			CO1 CO2
5.2 Nonverbal Communication grooming, personal appearance, hygiene, deportment and body language			CO3 CO4
5.3 Interpersonal skills Leadership skills, team work, active listening			
5.4 Critical thinking How to improve critical thinking, tips for critical thinking			
Total	50	32	-

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks 50
	Practical Title	
1.	Modern office technology	
2.	Seminar	
3.	Technical writing	
4.	Job interviews	
5	Soft skills	
No	Class room Assignments	
1	Email communication	
2	Power point presentation	
3.	drafting seminar invites	
4.	Drafting hand outs for seminars	
5	Drafting sales letter	
6	Drafting complaint letters	
7	Drafting adjustment letters	
8	Drafting tender notice	
9.	Filling maintenance reports	
10.	Drafting inspection reports	
11	Drafting abstract	
12	Drafting notice for meetings	
13	Drafting agenda of meetings	
14	Drafting minutes of meeting	
15	Drafting resume and job application	
16	Drafting letter of acceptance	
17	Drafting cold contact cover letter	
18	Group discussions	
19	Debates	
20	Group presentations	

8. LEARNING RESOURCES

8.1 Reference books

S. No.	Author	Title of Books	Publishers
1	P.Prasad, Rajendra	The functional aspects of	s.k. kataria &sons
	k. Sharma	communication skills	
2	Pal & Rorualling	Essentials of business	Sultan chand & sons
		communication	
3	Grount Taylor	English conversation practice	Tata MCgraw Hill
4	R.C. Sharma &	Business Correspondence & report	Tata MCgraw Hill
	Krishna Mohan	writing	

(SB604) SHIP RESISTANCE & PROPULSION

1. COURSE OBJECTIVES: The course contents are framed to impart knowledge to students to understand the relevance of resistance and propulsion system in ships. The course contents are framed to impart knowledge to students to understand the relevance of resistance, estimate ship resistance, select main propulsion plant based on resistance calculations, known various aspects of resistance and the dependence on hull-form, know different types of propellers and their application, familiarize with propeller data series.

2. PRE-REQUISITES: Knowledge of Maths and science

Semester VI									
Course code &	Peri	iods/V	Veek	Total		Exan	nination	n Scheme	
course title	(iı	n hou	rs)	Hours	Theory		y Practical		Total
					Ma	rks	Μ	larks	Marks
(SB604	L	Т	P	H	TH	TM	TW	PR/OR	
Ship Resistance	4	0	0	64	75	25	-	-	100
and Propulsion)									

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB604.CO1: List the terms related to ship propulsion systems.

SB604.CO2: Explain the various ship propulsion systems.

SB604.CO3: Solve the problems related to resistance and powering of ships.

SB604.CO4: Sketch the various components of ship propulsion systems

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	3	3	2	0	0	1	1	1
CO2	2	2	2	1	1	1	2	2	1
CO3	3	3	3	2	1	2	3	1	1
CO4	1	2	2	1	0	2	3	2	2

Relationship : Low-1 Medium-2 High-3

Unit 1 RESISTANCE 1.1 Components of resistance: Frictional resistance, wave making resistance, Eddy resistance, viscous pressure drag, air resistance, wind resistance, residuary resistance. 1.2 Dimensional analysis-Froude's No., Reynold's No.	M 24	Thr 21	CO CO1 CO2 CO3 CO4
1.1 Components of resistance: Frictional resistance, wave making resistance, Eddy resistance, viscous pressure drag, air resistance, wind resistance, residuary resistance.	24	21	CO2 CO3
resistance, Eddy resistance, viscous pressure drag, air resistance, wind resistance, residuary resistance.			CO3
wind resistance, residuary resistance.			
			CO4
1.2 Dimensional analysis-Froude's No., Reynold's No.			
			-
1.3 Model testing			1
1.3.1 Geometric, kinematic and dynamic similarity.			
1.3.2 Froude's law of similarity.			
1.3.3 Procedure for model testing.			
1.3.4 Model ship correlation			
1.4 Estimation of frictional resistance.			-
1.5 Calculation of effective power.			-
1.6 Shallow water effect.			-
1.7 Estimation of resistance from Guldhammer's and Harvald's diagram.			
2 SCREW PROPELLERS	12	11	CO1
2.1 Geometry of propeller- Pitch rake, skew, diameter. Blade sections.			CO2 CO3
2.2 Interaction between hull and propeller-wake, slip, thrust deduction.			CO4
2.3 Open water tests and Self-propulsion test.			-
2.4 Cavitation.			-
2.5 Propeller materials.			-
3 POWERING	12	10	CO1
3.1 Effective power, Thrust Power, Delivered power, Shaft Power,	12	10	CO1

Brake horse Power, Indicated horse power(IHP), Maximum	1		CO3
continous Rating (MCR).			CO4
3.2 Propulsion efficiencies.			
3.3 Powering calculations.			
4 SPECIAL TYPES OF PROPELLERS	12	10	CO1
4.1 Ducted propellers			CO2
4.2 Vertical axis propellers			CO3
4.3 Controllable pitch propellers			CO4
4.4 Tandem and Contra rotating propellers			
4.5 Super cavitating propellers			
5 STERN GEAR	15	12	CO1
5.1 Stern tube			CO2
5.1.1 types of stern tubes			CO3
5.2 A-brackets			CO4
5.3 Reduction and reversing gears.			
5.4 Types of rudders.			
5.4.1 Angle of heel due force exerted on rudder			
5.4.2 Angle of heel while turning			
Total	75	64	

The Course will be delivered through lectures, class room interactions, exercises and case studies.

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Resistance	21	24
2	Screw propellers	11	12
3	Powering	10	12
4	Types of Propellers	10	12
5	Stern gear	12	15
	Total	64	75

9. LEARNING RESOURCESText

Books

S. No.	Author	Title of Books	Publishers
1	Rawson, K.J. and Tupper E.	Basic Ship Theory, Vol I & II	Longman
2	Munro-Smith	Ships and Naval Architecture	Institute of Marine Engineers

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Edward V. Lewis	Principles of Naval Architecture	SNAME
2	A. A. Harvald	Resistance and Propulsion of Ships	Wiley Interscience Publication
3	Baxter, B.	Naval Architecture Examples and Theory	Charles Griffin & Co
4	D.G.M. Watson	Practical Ship Design	Elsevier Ocean Engg. book series

(SB611) MARINE REGULATION

1. COURSE OBJECTIVES: Understanding marine regulations with regards to shipping and shipbuilding industry. Shipping and Shipbuilding are global enterprises involving many nations. Each nation has its own rules and regulations concerning shipping. A commonality of rules and regulations is required for global enterprises to function. The International Maritime Organisation (IMO) is the body that ensures commonality of rules and regulations in the marine field. The member countries of the IMO incorporate the rules and regulations framed by the IMO, in the rules and regulations of their respective countries and set up mechanisms for administering these rules. These rules relate to Safetyof ships, ship's personnel and passengers, and the marine Environment. The students should understand this regulatory frame work and the essential features of these rules and regulations.

2. PRE-REQUISITES: Basic knowledge of Ship construction technology, Ship Drawing and Calculation.

Semester VI									
Course code &	Per	iods/V	Veek	Total		Exan	nination	n Scheme	
course title	(i	n hou	rs)	Hours	The	ory	Pra	actical	Total
					Ma	rks	Μ	larks	Marks
(SB611)	L	Т	P	H	TH	TM	TW	PR/OR	
Marine Regulation	3	0	2	80	75	25	25	25	150

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- **SB611.CO1:** Identify the general provisions of Marine regulations.
- **SB611.CO2:** Explain Marine regulatory frame work and the essential features of Marine rules and regulations.
- SB611.CO3: Apply these rules for Safety of ships, ship's personnel and passengers, and the marineEnvironment.
- SB611.CO4: Interpret the technical implications of Marine rules and regulations in shipbuilding andShipping Industry

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	0	0	0	3	0	2	1	0
CO2	1	2	0	0	3	2	2	2	0
CO3	2	3	2	0	3	2	2	2	2
CO4	1	2	0	0	3	2	2	2	2

Relationship : Low-1 Medium-2 High-3

M = Marks Thr = Teaching hours	CO = Course Objectives						
Unit		Μ	Thr	CO			
1 MARINE REGULATIONS – UNIT 1.	16	10	CO1				
			CO2				
1.1 Shipping & Shipbuilding industry (Int	roductory Lesson) :			CO3			
Explaining functions of the two	o industries. Interplay among			CO4			
organizations connected with these inc				_			
1.2 Functions of Organisations related to							
Introducing Regulatory Organisations							
IACS, Flag State, IMO, ILO, Other rel 1.3 IMO : Structure, How regulations are							
Contents: IMO committees' functions							
1.4 Indian Merchant Shipping Act, MS Ru							
Contents of important Parts of Ac	*						
Shipbuilding Industry, Process of im							
Rules.							
2 MARINE REGULATIONS – UNIT 2.		12	9	CO1			
Load Line Regulations				CO2			
				CO3			
	provisions of the Regulations,			CO4			
Provisions in the Regulations 2.2 Conditions of Assignment,				-			
Various conditions of assignment discussed							
2.3 Implementation							
Assignment of Freeboard, Load line Mark e	explained						
2.4 Surveys.				-			
Items of Load line survey discussed.							
2 MADINE DECHLATIONS LINE 2		24	15	C01			
3 MARINE REGULATIONS –UNIT 3. SOLAS							
JOLAJ			CO2				
3.1 Part 1 Chapter I General pro			CO3 CO4				
General provisions of SOLAS, Chapter den				04			
3.2 Chapter II-1 Construction				1			
Structure, subdivision and stability, machine	ery and electrical installations.						

3.3 Chapter II-2 Construction- Fire protection, fire detection and fire extinction.			
3.4 Chapter III – VII			
Life-saving appliances, Radio communications, Safety of navigation,			
Carriage of cargoes, Carriage of dangerous goods.			
4 Marine Regulations –Unit 4. MARPOL	15	10	CO1 CO2
4.1 Annex I Regulations			CO3
Prevention of Pollution by Oil.			CO4
4.2 Annex II Regulations. Prevention of Pollution by Noxious Liquid Substances in Bulk,			
4.3 Annex II-VI Regulations Prevention of Pollution byHarmful Substances Carried by Sea in Packaged Form, Sewage, Garbage, Air Pollution			
_			
5 MARINE REGULATIONS –UNIT 5.	8	4	CO1
Two recent IMO regulations.			CO2
5.1 Ballast Water Management.			CO3
Basic provisions of the regulation			CO4
5.2 Recycling of ships			
Basic provisions of the regulation.			
Total	75	48	

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
6	Marine Regulations –Unit 1	10	16
7	Marine Regulations –Unit 2	9	12
8	Marine Regulations –Unit 3	15	24
9	Marine Regulations –Unit 4	10	15
10	Marine Regulations –Unit 5	4	8
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Unit	Practical	Marks	CO
1	1	Delineation of processes of Implementation of IMO and Indian Safety regulations,		CO1 CO2
2	2	Delineation of the process of Load line Survey		CO3 CO4
3	3	Q&A regarding some of SOLAS regulations		0.04
4	4	Q&A regarding some of the MARPOL regulations		
5	5	Summarising "B.W. Management" and "Recycling of ships"	1	
		Total	25	

10. LEARNING RESOURCESText

Books

S. No.	Author	Title of Books	Publishers
1	D G Shipping	Merchant shipping Rules.	DG Shipping Website
2	IMO	Load line, SOLAS, MARPOL 73/78	IMO
3	IMO	Ballast Water Management.	IMO Website
		Recycling of ships	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	IMO	LSA Code, FFA Code	IMO

(FB 604) QUALITY CONTROL & INSPECTION

1. COURSE OBJECTIVES :

A technician working in quality control and inspection department must develop quality consciousness in performing his duties. He must be familiar with processes and methods which build quality into his product or service. This course is designed to develop these abilities and skills.

2. PRE-REQUISITES:

Students should know

- 1. Strength of Material
- 2. Welding in Ship Construction

3. TEACHING AND EXAMINATION SCHEME

Semester VI											
Course code &	Peri	iods/V	Veek	Total		Exan	nination	n Scheme			
course title	(iı	n hou	rs)	Hours	The	ory	Pra	actical	Total		
					Marks		Marks Marks		Marks		Marks
FB604	L	Т	Р	H	TH	TM	TW	PR/OR			
Quality	3	0	2	80	75	25	25	25	150		
Control &											
Inspection											

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

FB604.CO1: Acquire the knowledge of quality, quality control, inspection and testing. **FB604.CO2:** Use various testing equipment.

FB604.CO3: Select appropriate testing method for required quality parameters of weldedcomponents.

FB604.CO4: Conduct quality checks for welded component.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	2	1	1	3	3	1	3
CO2	3	3	1	3	1	3	3	2	3
CO3	3	3	2	2	1	3	3	1	3
CO4	3	3	3	3	3	3	3	2	2

Relationship : Low-1 Medium-2 High-3

M = Marks	Thr = Teaching	CO = Course Objectives			
Unit	hours		М	Th r	СО
1 BASIC C	CONCEPTS OF OUALIT	TY & QUALITY CONTROL		-	
1.1 Basic co Quality chan (b) quality of maintainabi	oncepts of Quality: Defin cacteristic, Parameters of f of conformance (c) abilitie	ition of quality as fitness for use, itness for use: (a) quality of design es – availability, reliability &	6	3	CO1
1.2 Basic co process of Advantages	oncepts of Quality Control control, Definition of (: Definition of Control, Regulatory Quality control, Basic objectives, of technician in promoting quality	3	3	C01
control, pro	cess control, product contro		- 3	2	CO1
1.4 Approach to solution of quality problems (Briefly): Engineering, Statistical and Management.					CO1
1.5 Quality	value, Quality cost, Balanc	e between quality cost and value	3	2	CO1
1.6 Categori external fail		ion, appraisal, internal failure,	- 3	2	CO1
			15	10	
2 QUALIT	Y ASSURANCE				
		ef), TQM, ISO 9000, 5S, Quality	9	6	CO1 CO1, CO2, CO3, CO4
			9	6	
3 INSPECT					
3.2 Differen	on and Meaning ce between inspection and	quality control	3	1	CO1 CO1
3.3 Aims of 3.4 Classific Based on lo	cations of inspection:- (i) B	Based on work performance (ii)	3	1	CO1 CO1
3.5 Duties o					C01
3.6 Inspectio			6	5	CO1
3.7 Tools of	inspection			1	CO1
			12	8	

A DESTRICTIVE TESTING	1		
4 DESTRUCTIVE TESTING			001
4.1 Tensile Test: Preparation of specimen, Test procedure		2	CO1,
	6		CO2,
			CO3,
			CO4
4.2 Bend test: Purpose, Free bend test, Guided bend test, Transverse bend		2	CO1,
test, Longitudinal bend test, Side bend test.			CO2,
			CO3,
			CO4
4.3 Impact test: Principle, Types of tests: Charpy test & Izod test, Test	3	2	CO1,
procedure.	5	2	CO2,
			CO3,
			CO4
4.4 Etch Test: Concept, Etching reagents, Preparation of test specimen,		1	CO1,
Types of tests: Macro & Micro, Test Procedure.		1	CO2,
	6		CO3,
			CO4
4.5 Nick Break Test: Purpose, Preparation of specimen, Test procedure		1	CO1,
······································		1	CO2,
			CO3,
			CO4
4.6 Hardness test: Purpose, Types of tests: Brinell test, Rockwell test &			CO1,
Vikers		2	CO1, CO2,
Hardness test, Test Procedure.			CO2, CO3,
Hardness test, Test Hotedule.			CO3, CO4
	15	10	0.04
5 NON DESTRUCTIVE TESTING	10	10	
			CO1
5.1 Visual Inspection	3		CO1,
	5	2	CO2,
		Z	CO3, CO4
5.2 Acoustic Test / Sound Test			
5.2 Acoustic Test / Sound Test			CO1,
			CO2,
			CO3,
			CO4
5.3 Leak Test: Concept, Purpose, Types, Procedure, Water soluble paper	3		CO1,
test with aluminium foil.			CO2,
			CO3,
	ļ		CO4
		_	CO1,
5.4 Magnetic Particle Testing: Principle, Procedure, Magnetising the		- 7	,
specimen, Applying magnetic particles, Locating the defects, Advantages,	6	3	CO^{2}
	6	3	CO2, CO3,
specimen, Applying magnetic particles, Locating the defects, Advantages,	6	3	

5.5 Dye Penetrant Inspection: Principle, Procedure, Advantages, Disadvantages, Applications, Fluorescent process		1	CO1, CO2,
	6		СОЗ,
			CO4
5.6 Ultrasonic Inspections: Principle, Procedure, Advantages, Limitations,			CO1,
Applications		3	CO2,
		C	СОЗ,
			CO4
5.7 Eddy Current Testing: Principle, Procedure, Advantages, Limitations,			CO1,
Applications.			CO2,
			СОЗ,
			CO4
5.8 Radiographic Testing: principle of X-rays, X-ray radiography, Advantages,	6	5	CO1,
Disadvantages, Applications, principle of Gamma-rays, Gamma-ray			CO2,
radiography, Advantages, Disadvantages, Applications, Penetrameters.			CO3,
			CO4
	24	14	
Total	75	48	

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No	Unit	Number of lectures	Marks
1	BASIC CONCEPTS OF QUALITY & QUALITY CONTROL	10	15
2	QUALITY ASSURANCE	6	9
3	INSPECTION	8	12
4	DESTRUCTIVE TESTING	10	15
5	NON DESTRUCTIVE TESTING	14	24
	Total	48	75

8.	SPECIFICATION	TABLE	FOR	THEORY/	MACRO-LESSON	PLAN
•••				/		

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1	Study of different defects in welded joints.	5
2	Visual Inspection & Sound Test	
3	Dye penetrant test.	5

Directorate of Technical Education, Goa State

4	Fluorescent penetrant test	
5	Magnetic particle test	5
6	Tensile tests on welded specimens (Welded by MMAW, GMAW or Gas Welding)	5
7	Bend tests on welded specimen	5
8	Impact tests on welded specimen	5
	Total	25

10. LEARNING RESOURCESText Books

S. No.	Author	Title of Books	Publishers
1	J. M. Juran &	Quality Planning & Analysis	TATA McGraw-Hill
	F.		Pub.
	M. Gryna		
2		Metals Handbook ASM, Vol 6	
			-

(SB 612) MATERIALS HANDLING AND SAFETY ENGINEERING

1.COURSE OBJECTIVES: The shipbuilding & ship repair industry involves handling of materials at every stage in the form of raw materials, semi finished, and finished products. A student therefore who is involved in such or related industry should have a proper knowledge of the various materials handling methods, material flow storage and warehousing, inventory control, plant layout and related functions. We are also aware that the accident occurring can do immense damage to life and property. So in the safety-engineering topic more stress is given on prevention aspects of accidents, fire fighting equipment, handling of tools and various types of hazards, safety rules etc.

2. PRE-REQUISITES: Engineering Materials

Semester	VI									
Course code	&	Perio	ds/We	ek	Total	Exami	nation S	cheme		
course title		(in hours)		Hours	Theory		Practical		Total	
					Marks		Marks		Marks	
SB612		L	Т	Р	H	ТН	TM	TW	PR/OR	_
Material Hai	ndling	3	-	2	80	75	25	25	25	150
& Safet	y –									
Engineeer	ing									

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB612.CO1: Explain the basic concept of material handling and facility location.

SB612.CO2: Discuss the material handling principles and tools used in inventory management. **SB612.CO3:** Apply the material handling concepts and explain the material handling equipments. **SB612.CO4:** Use safe working practices in material handling environment.

5. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2		
CO1	2	0	0	0	2	2	1	0	0		
CO2	2	1	1	0	2	2	2	0	1		
CO3	3	1	1	1	2	2	1	1	1		
CO4	3	1	1	1	3	2	2	1	2		
Relationship : Low-1 Medium-2 High-3								•			

B. DETAILED COURSE CONTENTS / MICRO-LESSON PLANM = MarksThr = Teaching hoursCO = Course Objectives		1	
Unit 1	Μ	Thr	CO
Unit 1. Introduction to Material Handling	12	7	CO1
1.1 Definition and scope, system concept, Classification of Materials			CO2
Handling-Unit and Bulk			CO3
1.2 Objectives of material handling. Unit Load concept, Pallets, Skids and			CO4
Containers.			
1.3 Facility location: Factors for consideration in site selection. Plants			
Layout and Material Handling			
1.4 Types of Layout, Inter relationship between Plant Layout and Material			
Handling.			
2 Unit 2: Flow in Material Handling	18	12	CO1
2.1 Overall system of material flow cycle. Material Handling Principles.			CO2
Flow Patterns (vertical flow lines excluded).			CO3
2.2 Designing of Material Flow Pattern. Material Handling equation,			CO4
advantages of planned material flow.			
2.3 Approach to solve Material Handling problems.			
2.4 Inventory and its Control, Inventory and its functions, need for its			
controls.			
2.5 significance of EOQ, Selective inventory Control techniques .			
2.6 Materials Management and its objectives, Materials Handling and			
Productivity.			
Unit 3: Handling Equipments-Trucks, Conveyors& accessories	12	8	CO1
3.1 • Industrial Hand Trucks: Basic types, Powered industrial Truck.	12	0	CO1
3.2 Forklift, description of forklift, characteristics, application, and			CO3
Maintenance aspects.			CO4
3.3.Conveyor's-Belt conveyors, Chain conveyors.			
3.4 Wire ropes, Chains, Hooks, Knots, Slings and Grabs, Chain pulley			
blocks, and sheaves, winches and capstan.			
Unit4. Handling Equipments-Cranes and Hoists.	15	10	CO1
4.1 Cranes: Classification, characteristics, description and application of			CO2
derrick crane, Overhead crane - Bridge crane, Gantry crane.			CO3
4.3 Hoists: Manually operated, Electric power operated hoist, limit			CO4
switches and overload limit device.			
Unit 5 Safety Engineering cycles	18	11	CO1
5.1 Safety Laws and Role of Factory Inspector, Regulating bodies OSHA,	1		CO2
ANSI, etc. Risk Assessment.			CO3
5.2 First Aid, Artificial respiration. Personal Protective equipment.			CO4
5.3 Hazards and its types Machine Hazards. Noise and control of noise,			
Dust Control. Hazards in welding & gas cutting operation			
5.4 Fire hazards, extinguishers, prevention of fire, types of fires.			

5.5 Pressure vessel hazards, safety precautions in Marine Boilers			
5.6 Electrical hazards and safety requirements. Chemical hazards			
5.7 House Keeping, Insurance coverage. Working in confined spaces and			
common explosions.			
5.8 Definition of Accident. Causes and costs, types of accidents, Accident			
report and Analysis .Safety Awareness			
Total	75	48	

The Course will be delivered through lectures, class room interactions, exercises and case studies

8.	SPECIFICATION	TABLE	FOR	THEORY/	MACRO-LESSON	PLAN
•••				/		

Unit No.	Unit	Number of Lectures	Marks
1	Introduction to Material Handling	07	12
2	Flow in Material Handling	12	18
3	Handling Equipments-Industrial trucks, conveyors &Acessories.	08	12
4	Handling Equipments-Cranes and hoists	10	15
5	Safety Engineering	11	18
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks	CO
1.	Assignment on accidents and accident Report.		CO1
2	Assignment on Safety Laws and Role of Factory Inspector		CO2
3	Presentation on First Aid and artificial respiration		CO3
4	Assignments of Hazards and their types.		CO4
5	Common accidents and Insurance coverage in Shipyards.		
	Total	25	

10. LEARNING

RESOURCES Text Books

Sr.No.	Author	Title of book	Publication
1	S. C. Sharma	Material Handling and Material Management	Khanna Publishers
2	Meinsdroft	Industrial Safety	Prentice Hall
3	R. B. Chowdary& G.R.N. Tagore.	Material Handling Equipment	Khanna Publishers

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	James M. Apple	Material Handling System Design	John-Willlwy and Sons Publication, NewYork.
2	Saxena A. N	Industrial Safety	National Productive council New Delhi

(MC 403) MECHATRONICS

1. COURSE OBJECTIVE: To understand the applications of Mechatronics in Automation.Modern industry demands lot of flexibility in product design and manufacturing processes. While satisfying this need industries cannot afford to compromise with quality, cost and delivery schedule. The area of Mechatronics has a tremendous potential to address such challenges by integrating Mechanical engineering with electrical, Electronics and software components. We can hardly find any field wheremechatronics is not applicable. Basic knowledge of this course will definitely enhance the employability of pass-out students in various engineering areas.

2. PRE-REQUISITES: Elements of Electrical and Electronics Engineering,

Semester VI									
Course code &	Perio	ds/We	ek	Total	Examin	nation S	cheme		
course title	(in ho	ours)		Hours Theory		Practical		Total	
					Marks		Marks	5	Marks
						T			
(MC 403)	L	Т	P	Н	TH	TM	TW	PR/OR	
Mechatronics	3	-	2	80	75	25	25	25	150

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to: **MC403.CO1:** Identify basic elements of mechatronic systems.

MC403.CO2: Select basic types of sensors and actuators.

MC403.CO3: Experiment with simple circuit on Arduino board.

MC403.CO4: Develop simple ladder programs on PLC.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	1	0	0	0	0	0	1
CO2	3	2	1	3	0	0	0	0	1
CO3	3	3	3	3	1	1	2	0	0
CO4	3	3	3	3	1	1	2	0	1

Relationship : Low-1 Medium-2 High-3

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	CO
1. Introduction to Mechatronics	9	4	CO1
1.1 Introduction to Mechatronics and its scope.			
1.2 advantages and disadvantages of mechatronics.			
1.3 Comparison between Traditional and Mechatronics system			
 1.4 Two types of Mechatronic systems – (i)Measurement type and (ii) Control type; Elements of Measurement system (Block diagram) and examples, Elements of Open loop & Closed loop Control systems (Block diagrams) and examples; Applications of Mechatronics. 1.4 Case studies of Mechatronics systems: - (i) Measurement type - 			
Digital thermometer (ii) Control type- Engine Management system, Automatic Washing Machine,			
2. Sensors and Transducers	18	12	CO2
2.1 Introduction of sensors and Transducers, Difference between sensor and transducer.			
2.2 Performance Terminology related with sensor,			
2.2.1 Static characteristics - range and span, error, accuracy, sensitivity, repeatability, stability, resolution.			
2.2.2 Dynamic characteristics - response time, settling time.			
2.3 Classification of sensors-			
 A) Based on type of Output- (i) Analog (ii) Digital B) Based on need of external power: - (i) Active (ii) Passive C) Based on sensed parameter: - (i) Pressure, Force (ii) Temperature (iii) Motion (displacement, Velocity, Acceleration) (iv) Flow and level (v) light (vi) smoke (vii) Colour (viii) touch (ix) Humidity (x) Proximity (xi) Infrared (IR) 			
2.4 Working principle and application of following sensors / Transducers: - (i) Potentiometer (ii) Strain gauge (iii) Linear Variable			

Differential Transformer (LVDT) (iv) Optical Encoder (v)			
Photoelectric Proximity sensor (vi) Tach generator (vii) Thermocouple			
(viii) RTD sensor.			
2.5 Selection criteria for sensors.			
2.6 Signal Conditioning – need, process, functions, ADC and DAC.			
Block diagram of DAQ.			
3. Actuations Systems	15	10	CO2
3.1 Introduction and Classification of Actuators.			
3.2 Pneumatic Actuation System: Basic Elements of Pneumatic System. Hydraulic Actuation Systems: Basic Elements of hydraulic system.			
3.2 Working principle, schematic diagram and symbols of following: -			
Valves: - Direction control valves (Spool type) - 3/2 DC Valve and 5/2			
DC Valve; actuation methods of DC Valves; Check valve, Pressure			
relief valve, Flow control Valves.			
3.3 Cylinders: - Single Acting and Double acting cylinder.			
Rotary Actuators: - Gear motors and Vane Motors.			
3.4 Electrical Actuation systems: - Switching devices: Relays,			
Solenoid type devices: Solenoid valves, Drive systems: Stepper Motor and servo motor (Brief Working with neat sketches).			
and serve motor (Brief working with heat sketches).			
4. Microcontroller	15	12	CO3
4.1 Microcontroller: - Introduction, characteristics, classification and			
applications, Basic Block diagram. Introduction to Arduino platform.			
4.2 Atmel ATmega328 microcontroller: - Pin layout and other features.			
Arduino UNO R3 Board: - Hardware, main features, input output pins,			
powering, IDE and its installation, connecting to computer, program			
(sketch) compilation and uploading,			
4.3 Introduction to basic Arduino circuit components: – LED,			
Resistor, Diode, Bread Board, Jumper, Button, Servo, LCD, LDR, IR			

Directorate of Technical Education, Goa State

Total	75	48	
timers, counters in elementary level Ladder diagrams like motor start and stop, water level control, Output interlock, logic functions.			
ladder programming, logic functions, use of latching, internal relays,			
5.4 ladder programming: Concept of Ladder Diagram, sequence of			
5.3 PLC system layout (Basic block diagram). Input/output processing. PLC function and operation.			
5.2 Criteria for selection of PLC.			
5.1 Introduction to PLC: Need for PLC, Definition, Advantages and disadvantages of PLC, PLC sizes.			
5. Programmable Logic Controller (PLC)	18	10	CO4
4.5 Arduino applications- Home and Industry automation, Robotics and control systems.			
4.4 Writing, compiling, uploading and running following programs: – Digital output (LED blinking), Analog output (LED fading).			
LED, Relay.			

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No	Unit	Number of lectures hrs	Marks
1	Introduction of Mechatronics	04	09
2	Sensors and Transducers	12	18
3	Actuations Systems	10	15
4	Microcontroller	12	15
5	Programmable Logic Controller (PLC)	10	18
	Total	48	75

8. Specification table for theory/ macro-lesson plan

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Experiment on sensor trainer to understand working and application of different Sensors used in Automated System.	
	For example - Temperature sensor, Pressure sensor, Flow sensor, level sensor, proximity sensor. Force sensor Etc.	
2.	Identification, working of different actuating elements:	
	Relay, solenoid valve, stepper motor, Servo motors, valves, cylinders etc	
3 & 4	III) Experiment to build any two simple Pneumatic circuits.	
5,6,7	Any three experiments on Arduino Board.	
	For example-	
	i) Blinking and fading effects on LED	
	ii) Turn on LED with button	
	iii) Move the Servo to commanded angle	
	iv) Print "Hallo world" in LCD	
	v) Using a sensor	
8,9,10	Any three experiments on PLC trainer by developing ladder diagram:	
	For example-	
	i) Output interlock	
	ii) Logic Functions	
	iii) Timers and Counters	
	iv) Water Level control	
	v) Conveyor Belt control	
	vi) Traffic Light control	
11	Demonstration and working of any Mechatronic system.	
	Total	25

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	W. Bolton	Mechatronics	Pearson Education Ltd
2	John W. Webb	Programmable Logic Controller	PHI
3	Andrew Parr	Hydraulics and Pneumatics	JAICO
4	Massimo Benzi	Make: Getting Stareted with Arduino	Maker Media

Reference Books for further study

S. No.	Author	Title of Books	Publishers	
1	R. K. Rajput	Mechatronics	S. Chand Publications	
2	K.Shanmugasundaram	Hydraulic and Pneumatic Conrols	S. Chand	
3	K.P. Ramachandran	Mechatronics	Wiley	

AUDIT COURSE

(AC102) INDIAN CONSTITUTION

1. COURSE OBJECTIVES:

As a proud citizen of this country every student must be aware about the Indian Constitution to appreciate the provisions available for the people of this biggest democracy in Indian Constitution so that the youth of this country plays active role in development of the country by participating in the formation of sensitive and proactive Government at national and state level. This course intends to make students aware about various constituents of the Indian Constitution.

2. TEACHING AND EXAMINATION SCHEME

	Semester	VI							
	Course code & course title		Periods/Week (in hours)		Total	Examination Scheme			
					Hours	Theory Marks	Practical Marks	Total	
								Marks	
	(AC102) India	n	L	Т	Р	Н	TH	ТМ	TW
	Constitution		2	-	-	32	-	-	-

3. Course Content

Unit 1 – The Constitution - Introduction

- The History of the Making of the Indian Constitution
- Preamble and the Basic Structure, and its interpretation
- Fundamental Rights and Duties and their interpretation
- State Policy Principles

Unit 2 – Union Government

- Structure of the Indian Union
- President Role and Power
- Prime Minister and Council of Ministers
- Lok Sabha and Rajya Sabha

Unit 3 – State Government

- Governor Role and Power
- Chief Minister and Council of Ministers
- State Secretariat

Unit 4 – Local Administration

- District Administration
- Municipal Corporation
- Zila Panchayat

Unit 5 – Election Commission

- Role and Functioning
- Chief Election Commissioner
- State Election Commission

4. Suggested Learning Resources:

Title of Book Author Publication

1. Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi,2008

2. The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3. Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Third 2018 edition

5. Suggested Software/Learning Websites:

a. https://www.constitution.org/cons/india/const.html

b. http://www.legislative.gov.in/constitution-of-india

c. https://www.sci.gov.in/constitution

d. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-ofindia/
(SB701) ELEMENTARY SHIP DESIGN

1. COURSE OBJECTIVES: The course contents are framed to impart knowledge to students to be ableto produce the preliminary design of a ship. The course content is designed to enable the students to understand design features of various ships, factors influencing design, rules and regulations of statutory bodies. The design stages in Ship design process as considered in Design spiral to be explained to the students. The students should also be introduced to submission drawing like General Arrangement, Freeboard Calculation and Tonnage Calculations. They should also be explained about Specifications and Contracts prepared during preliminary stage.

2. PRE-REQUISITES: Knowledge of Maths, Science, Basic ship theory, and marine engineering.

3. TEACHING AND EXAMINATION SCHEME

Semester VII									
Course code &	Peri	iods/V	Veek	Total	Examination Scheme				
course title	(i)	n hou	rs)	Hours	Theory Marks		Practical Marks		Total Marks
(SB701 Elementary	L	Т	P	H	TH	TM	TW PR/OR		
Ship Design)	5	0	0	80	75	25	-	-	100

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB701.CO1: Identify the stages and components of concept and preliminary design of ships. **SB701.CO2:** Explain the stages and components of concept and preliminary design of ships. **SB701.CO3:** Solve the problems related to concept and preliminary design of ships.

SB701.CO4: Prepare the plans associated with concept and preliminary design of ships.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	3	2	0	1	1	2	3	0
CO2	2	2	1	0	2	1	1	1	0
CO3	2	2	3	0	1	2	2	2	0
CO4	2	1	1	0	3	1	2	1	0

Relationship : Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	СО
1 FACTORS IN CONCEPT DESIGN	09	10	CO1
1.1 Specific design features of different types of ships,			CO2
			CO3
1.2 Trading patterns, Owner's requirement.			CO4
1.3 Ship Design Data.			
1.4 Specification and contracts.			
2 PRELIMINARY DESIGN	33	34	CO1
2.1 Design spiral			CO2
2.2.1 Determination of main dimensions: Dimensional Relations and			CO3
ratios.			CO4
2.2.2 Design categories- Deadweight carrier, volume carrier,			
displacement equation, volume equation and displacement			
coefficient.			-
2.2.3Checking of preliminary dimensions for deadweight.			-
2.3 Estimation of form coefficients and hydrostatic particulars.			
2.4.1 Lightship Weight and Machinery Weight estimation.			_
2.4.2 Light ship mass-Steel mass, outfit mass, engine plant mass, power estimation, Admiralty coefficient.			
			-
2.5 Estimation of cargo capacity.			
3.FREEBOARD & TONNAGE CALCULATIONS	12	13	CO1
3.1Freeboard			CO2
			CO3
3.1.2Load Line rules, Load Line marking.			CO4
3.1.3Types of freeboards.			-
5.1.5 Types of freeboards.			
3.1.4Calculations of freeboard and freeboard corrections.			1
3.2 GRT and NRT.			1
3.2.1Enclosed spaces and Exempted spaces.			-

3.2.2 Tonnage rules and certificate.			
4 GENERAL ARRANGEMENT& MACHINERY SELECTION	12	13	CO1
4.1 General Arrangement			CO2
4.1.1Introduction.			CO3
4.1.2Factors influencing the general arrangement			CO4
4.1.3Location of cargo spaces ,and machinery spaces			
4.1.4 Cargo spaces.			
4.1.5 Machinery spaces.			
4.1.6 Crew, passenger accommodation, and galley, safety			
regulations.			
4.1.7 Passages and Stairs			
4.2 Machinery Selection			
4.2.1 Introduction and criteria for choosing the main engine			
4.2.2 Selection of Main engine types such as slow-speed diesels,			
Medium-speed diesels & High-speed diesels.			
4.2.3Selection of Auxiliary Power.			
4.2.4 List of other engine room auxiliaries and equipment.			
4.2.5 Fuel economy through Ship Design-introductory concept.			
		10	
5 STABILITY AND TRIM REQUIREMENTS & SAFETY PLANS	09	10	CO1
5.1 Merchant ship stability standards			CO2
5.2 Intact stability standards			CO3
5.3 Trim and stability booklets (Trim fully loaded and Ballast trim)			CO4
5.4 Fire Protection: Zones, A class divisions, Means of escape and fire detection and extinguishing rules.			
5.5 Life Saving Appliances: Passenger Ship Requirements and Cargo Ship requirements			
Total	75	80	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Factors in concept design	10	09
2	Preliminary design	34	33
3	Freeboard Calculations & Tonnage Calculations	13	12
4	General arrangement & Machinery Selection	13	12
5	Stability and Trim Requirements & Safety Plan	10	09
	Total	80	75

9. LEARNING RESOURCESText

Books

S. No.	Author	Title of Books	Publishers
1	Munro-Smith.	Elements of Ship Design	IME, London
2	D.G.M. Watson	Practical Ship Design	Elsevier Ocean Engg. book series

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	H. Schneekluth	Ship design for Efficiency & Economy	Butter Worths
2	John Comstock	Principles of Naval Architecture	SNAME
3	Taggart	Ship design and construction	SNAME

(SB704) COMPUTER APPLICATION IN SHIP DESIGN

1. COURSE OBJECTIVES: The course contents are framed to impart introductory knowledge to students about modern ship design process using computers. The course content is designed to enablethe students to have introductory knowledge of modern ship design process using computers which will help students to appreciate the latest technology developed in Ship design. The students will be introduced to Ship Design software for basic design and detailed design.

2. PRE-REQUISITES: Knowledge of Maths, Science, Basic ship theory, and Marine engineering.

Semester	VII									
Course code	&	Peri	ods/V	Veek	Total	Examination Scheme				
course title	e	(in hours)		Hours	Theory Marks		Practical Marks		Total Marks	
(SB704)		L	Т	Р	Н	TH	TM	TW	PR/OR	
Computer	ſ	0	0	4	64	-	-	50	50	100
Application	In									
Ship Desig	n									

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB704.CO1: Understand the basic and detail design of hull structure and outfitting of a ship. **SB704.CO2:** Calculate the parameters of detail design of hull structure and outfitting of a ship. **SB704.CO3:** Solve numerical on basic and detail design of Hull structure.

SB704.CO4: Prepare the detail design of hull structure and outfitting of a ship using software.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	3	2	-	1	1	2	3	-
CO2	2	2	1	-	2	1	1	1	-
CO3	2	2	3	-	1	2	2	2	-
CO4	2	1	1	-	3	1	2	1	-

Relationship : Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Pract= Practical hours CO = Course Objectives			
Unit	Μ	Pract hrs	CO
1 HULL FORM DESIGN	-	01	CO1
1.1 Sectional Area Curve.			CO2 CO3
1.2 Development of Sectional area curve from main particulars.			CO4
1.3 Modification of sectional area curve of the basis ship.			
1.4 Development of lines from sectional area curve.			
2 MODIFICATION OF HULL FORM	_	01	CO1
2.1 Modification of sectional area curve of the basis ship		01	CO1
			CO3
			CO4
3.USE OF SOFTWARE IN BASIC DESIGN		01	CO1
(HULL FORM DEVELOPMENT)	-	01	CO2
3.1 Development of Hull forms.			CO3 CO4
3.1.1 Defining hull geometry			
3.1.2 Various forms of data input for hull form generation			
3.1.3 Generation of curves and surfaces			
3.1.4 Producing output (numerical and graphics reports).			
3.1.5 Interactive development of hull form using basic parameters			-
4.USE OF SOFTWARE IN BASIC DESIGN	_	01	CO1
(HULL FORM ANALYSIS)		-	CO2
4.1 Determination of Hydrostatic data, intact and damaged stability			CO3
using ship design software			CO4
4.2 Computation of capacities			1
4.3 Computation of Hydrostatics			1
4.4 Computation of Intact Stability			1
4.5 Computation of damage stability			1

5.USE OF SOFTWARE IN DETAIL DESIGN	-	60	CO1
5.1 Detailed design of basic structural sub-assemblies.			CO2 CO3
5.2 Detailed design of Hull and Piping components.			CO4
5.3 Generation of database of hull components and use of the same for detail design.			
5.4 Generation of production documents using ship design software.			
Tota	1 -	64	

7. COURSE DELIVERY:

The Course will be delivered through Laboratory interactions, exercises and case studies.

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks	СО
1.	Assignment on Hull form generation & Modification.		CO1 CO2
2.	Assignment on double bottom- 3D detailed model/drawing		CO3 CO4
3.	Assignment on Bulkhead drawing and midship drawing		
4.	Assignment on Outfitting – 3D pipe modeling.		
	Total	50	

9. LEARNING RESOURCESText

Books

S. No.	Author	Title of Books	Publishers
1	Rawson, K.J. & Tupper.	Basic Ship Theory Vol.1 & 2	Longman
2	Edward V. Lewis	Principles of Naval Architecture	SNAME

Reference Books for further study

S. No.	Author	Title of Books	Publishers		
1	H. Schneekluth	Ship design for Efficiency &	Butter Worths		
		Economy			
2	John Comstock	Principles of Naval Architecture	SNAME		
3	Taggart	Ship Design and Construction	SNAME		

(SB703) SHIPBUILDING PROJECT

1. COURSE OBJECTIVES: The course content is designed to enable the students to identify a shipbuilding problem. Solution of a problem involves definition of problem, background data toanalyse the problem, analysis of data, alternative solution and positive solution with conclusion.

2. PRE-REQUISITES: Knowledge of Maths, Science, Basic ship theory, and Marine engineering.

Semester	VII										
Course co	Course code &		'iods	Week	Total	Examination Scheme					
course title		(i	in hou	irs)	Hours	ours Theory Marks		Practical Marks		Total Marks	
						101	1,141 115				
(SB70	3)	L	Т	P	С	TH	TM	TW	PR/OR		
Shipbuil Proje	0	0	0	6	96	-	-	100	50	150	

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB703.CO1: Identify the problem based on knowledge of theory concepts learnt in earlier semesters

SB703.CO2: Analyze and Solve the problem. SB703.CO3: Draft

the solution in-terms of report. SB703.CO4: Develop technical

and management skills.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	2	1	1	1	2	1	1	1
CO2	2	1	2	1	1	2	1	1	2
CO3	2	1	2	1	1	2	2	2	2
CO4	1	1	1	1	2	3	2	1	2

Relationship : Low-1 Medium-2 High-3

M = Marks Pract= Practical hours CO = Course Objectives			
Unit	Μ	Pract hrs	CO
1 TYPE OF PROJECT		05	CO1
1.1 Deciding on choosing a topic whether Study / Construction			CO2
Activity / Design or Any other related to Shipbuilding.			CO3 CO4
2 MAIN OBJECTIVE & DATA GENERATION	-	10	
1.1 Identifying a problem .			
1.2Method to be followed to develop the solution.			
1.3Feasibility of the project.			1
1.4Summarizing of Literature/ Trends survey and Data.			
3.PROBLEM STATEMENT	-	15	
3.1 Defining the problem statement.			
3.2 Predicting solutions to be problems.			
4.WORKDONE IN THE PROJECT	-	30	-
4.1 Data accumulation, calculations, drawings.			
4.2Review of first Presentations			1
4.2Review of Second Presentations			1
4.2Outcome of the Project.			1
5.REPORT WRITING	-	20	-
Total	-	80	

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

7. COURSE DELIVERY:

The Course will be delivered through Laboratory interactions, exercises and case studies.

(CC601) INDUSTRIAL ORGANISATION AND MANAGEMENT

1. COURSE OBJECTIVES:

Management is the basic need of any organization. Organization consists of multiple activities which are to be systematically managed for effective output. The course covers various principles related to organization and management. The areas covered are finance, human resource, project management etc. After completion of the course, the student will be acquainted with management and other related aspects so that he/she will be able to apply this knowledge in order to achieve the organizational goals.

2. TEACHING AND EXAMINATION SCHEME

Semester VII	р	Oorio	de/		Examination Scheme					
Course Code & Course Title		Periods/ Week (in hours)		Total Hours	Theory	y Marks	Practic	al Marks	Total Marks	
CC601 Industrial	L	Т	Р	Н	ТН	ТМ	TW	PR/OR		
Organisation and Management	3	-	-	48	75	25	-	-	100	

3. COURSE OUTCOMES

On successful completion of the course, the student will be able to:

CC601.CO1: Describe types of business organizations.

CC601.CO2: Apply the principles of managing Men, Machines, and Materials in an industry.

CC601.CO3: Evaluate financial status of an industrial organization.

CC601.CO4: Develop problem solving skills in project management.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	0	0	0	0	1	0	0	2
CO2	2	1	1	1	1	2	2	0	3
CO3	3	2	1	2	3	3	2	0	3
CO4	3	3	2	2	2	3	3	2	3

Relationship: Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS/ MICRO-LESSON PLAN

M=Marks Thr= Teaching hours CO= Course Outcomes			
Unit	Μ	Thr	CO
 1.Business Organization 1.1 Types of business organizations: Individual proprietorship, Partnership, Joint Stock Companies: Private Ltd and Public Ltd, Co-operative societies, Public sector 1.2 Structure of business organization: Line organization, Functional organisation, Line and staff organization, Project organization 	10	6	CO1 CO2
 2. Business Management 2.1: Concept of management and administration, management as an art and science, evolution and growth of scientific management- contribution of F.W Taylor. 2.2 Basic functions of management: planning, organizing, staffing, directing, controlling. Other functions: forecasting, coordinating and decision- making. 2.3 Functions in Industry: Basics of procuring, store- keeping, material handling, production, packing and forwarding, marketing and sales, supervision, research and development. 2.4 Supervisory skills required in industry 	16	9	CO1 CO2 CO3
 3.Basics of Finance 3.1 Sources of finance 3.2 Cost Concepts: Necessity of costing, elements of cost: material, Labour and expense; prime cost, overhead cost, total cost, break- even analysis. 3.3 Materials management: Inventory control-standard order, reserve stock, reorder point, lead time. Economic order quantity, ABC Analysis. Introduction to Just in time (JIT) system 3.4 Depreciation: Definition and causes. Methods of calculating depreciation charges: Straight Line Method, Diminishing Balance Method, Sinking Fund method 3.5 Obsolescence- definitions and reasons. 3.6 Introduction to GST. 	18	13	CO1 CO2 CO3 CO4

	01	14	001	
4. Human Resource Management	21	14	CO1	
4.1 Functions of Personnel Department: Human resource			CO2	
planning, selection and recruitment, training, promotion and			CO3	
transfer, welfare of employees.			CO4	
4.2 Industrial Relations: Employer-employee relations, trade				
union, settlement of disputes of employees, collective bargaining,				
conciliation, arbitration, grievance handling mechanism.				
4.3 Wages and Incentives: Factors influencing wages, types of				
wage plans – time rate and piece rate, Incentive – objectives and				
types, individual and group incentive plan, characteristics of a				
good wage or incentive plan, difference between incentive and				
wage.				
4.4 Industrial Acts:				
Introduction to the following Industrial Acts:				
0				
Industrial Disputes Act 1947/1956; The Indian Factories Act 1948				
The Workmen's Compensation Act 1923				
5. Project Management	10	6	CO1	
5.1 Introduction to Project Management			CO2	
5.2 Network Analysis (Introduction to basic concepts with simple			CO3	
problems)			CO4	
CPM- Critical Path Method: Definition, network diagrams,				
critical path, advantages				
PERT- Programme Evaluation and Review Technique:				
Definition, network diagrams, advantages.				
Demittion, network diagrams, advantages.				
Comparison of PERT and CPM		1	1	
Comparison of PERT and CPM.				

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Business Organization	6	10
2	Business Management	9	16
3	Basics of Finance	13	18
4	Human Resource Management	14	21
5	Project Management	6	10
	Total	48	75

8. LEARNING RESOURCES

Text Books

S.No	Author	Title of Book	Publisher
1	O.P. Khanna	Industrial Engineering and Management	DhanpatRai Publications
2	T.R.Banga ,S.C. Sharma	Industrial Organisation and Engineering Economics	Khanna Publishers
3	Awate,Chunawala, Patel,Bhandarkar, Sriniwasan	Industrial Organisation and Management	Vrinda Publication
4	MartandTelsang	Industrial Engineering and Production Management	S.Chand& Company Ltd

(SB711) MARINE STRUCTURAL DESIGN

1. COURSE OBJECTIVES: The theory course content is framed to impart knowledge elementary knowledge of Marine structure design to the students. A general survey carried out to determine the competencies required by a diploma in Shipbuilding Engineering student revealed that the student should have an elementary knowledge of Marine structure design. The knowledge that he acquires in this subject is essential for the shipbuilders. In view of this emphasis has been laid on topics like structural analysis of fixed and continuous beams, design of joints, stress analysis of mid-ship section.

2. PRE-REQUISITES: Strength of Material, Basic ship theory-II.

Semester V	VII									
Course code & Per			ods/V	Veek	Total	Examination Scheme				
course title		(iı	n houi	rs)	Hours	The Ma	•	Practical Marks		Total Marks
(SB711) Mari	ne	L	Т	Р	H	TH	TM	TW	PR/OR	
Structural Des	ign	3	-	2	80	75	25	25	25	150

3. TEACHING AND EXAMINATION SCHEME

4.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB711.CO1: Define the various terms and methods used in marine structural design

SB711.CO2: Explain the different loads and stresses induced in marine structures.

SB711.CO3: Solve the problems related to marine structures.

SB711.CO4: Prepare graphical representation of loads and stresses.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO1 2 0 1 2 1 1 2 1 0 CO2 2 3 2 3 1 1 2 2 0 CO3 2 3 3 2 1 1 3 2 1 CO4 1 2 2 3 0 1 3 1 2		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO3 2 3 3 2 1 1 3 2 1	CO1	2	0	1	2	1	1	2	1	0
	CO2	2	3	2	3	1	1	2	2	0
CO4 1 2 2 3 0 1 3 1 2	CO3	2	3	3	2	1	1	3	2	1
	CO4	1	2	2	3	0	1	3	1	2

Relationship: Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN M = Thr = Teaching hours CO = Course Objectives			
Marks Unit	M	Thr	CO
1 Introduction	10	08	C01
1.1 General consideration in design			CO2
1.2 General procedure in design			CO3 CO4
1.3 Classification of structural analysis			-
1.4 Ship load and stresses			
1.5 Failure mode of ship's structures			
1.6 Factor of safety and general consideration in selecting factor of safety			
1.7 Theories of failures			1
2 Fixed and Continuous Beam	20	14	CO1
2.1 Factors governing the design of Beams-bending moment, shear force,			CO2
deflection, web buckling and web crippling.			CO3 CO4
2.2 Determination of fixed end moments for the beams carrying point loads and U.D.L. on full and part span.			
2.3 Construction of shear force diagrams and bending moment diagram of fixed beam.			-
2.4 Statically Indeterminate Beams.			_
2.5 Clapeyron's three moment method			_
2.6 Construction of shear force diagrams and bending moment diagram of continuous beam.			
3 Stresses in Ship Structure	15	10	CO1
3.1Section modulus of mid-ship section about centroidal axis			CO2
3.2 Bending stresses in ship structure due to horizontal and vertical			CO3
bending moment at even keel			CO4
3.3 Bending stresses in ship structure due to horizontal and vertical			
bending moment when heeled			4
3.4 Deflection of ship's hull girder			-
3.5 Double integration method			-
3.6 Deflection at any point along the length of the ship			
4 Bolted and Welded connections	15	08	CO1
4.1 Types of Bolts, Permissible stresses in bolts. Advantages and			CO1 CO2

	1	1	
Disadvantages of bolts, Bolts of uniform strength. High strength bolts			CO3
4.2 Design of Axially loaded bolts,			CO4
4.3 Design of Eccentrically loaded bolts with moments in the plane and perpendicular the plane of the bolts.			
4.4 Types of weld, weld size, throat thickness, effective length, overlap of weld, weld symbols, permissible stresses in welds.			
4.5 Strength of welded joint, determination of weld length, minimum length of weld for Axially loaded welded joints			
5 Introduction to Finite Element Method	15	08	CO1
5.1 Characteristics of FEM			CO2
5.2 Fundamentals of FEM			CO3
			CO4
5.3 Procedure of FEM and Application of FEM			
5.4 Mesh Division and Degrees of Freedom			
5.5 Loading and Supporting Condition			
Total	75	48	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction	08	10
2	Fixed and Continuous Beams	14	20
3	Stresses in Ship Structures	10	15
4	Bolted and Welded connections	08	15
5	Introduction to Finite Element Method	08	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical						
1	Bending moment and Shear force diagram of Fixed beams						
2	Bending moment and Shear force diagram of continuous beams						
3	Stress distribution at mid-ship section						
4	Design of bolted joints						
5	Design of welded joints						
		Total	25				

11. LEARNING RESOURCESText

Books

S. No.	Author	Title of Books	Publishers
1	Yasuhisa Okumoto,	Design of ship hull structures	Springer
	Yu Takeda,		
2	S. Ramamurutham	Strength of Materials	Dhanpat Rai & Sons
3	F.L. Singer	Strength of Materials	London Harper and
			Row
4	-	Strength of Materials	Schaum Series
5	Timoshenko and Gere	Mechanics of materials	CBS Publishers and
			distributors New
			Delhi.

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Bhavikatti S S	Strength of Materials for Polytechnic	Vikas
2	Bhandari V. B.	Design of Machine Elements	Mcgraw Hill
3			

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1	Mahadevan K.	Design data handbook	CBS Publisher
2			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1		www.nptel.ac.in	MHRD
2		www.machinedesign.top	

(SB712) DIESEL ENGINE OPERATION & MAINTENANCE

1. COURSE OBJECTIVES: To have thorough knowledge of the operation and maintenance of the most widely used prime mover, the diesel engine. The course content is designed for students to specialize in heat power engineering and to have thorough knowledge of the operation and maintenance of the diesel engine. The course provides for familiarization with the various applications of diesel engine, engine systems and role of maintenance associated with them. Wide range of actives vis-à-vis operations of diesel engine are also covered in this course. The course aims at providing a brief introduction to various maintenance strategies and thorough knowledge about troubleshooting and over hauling of diesel engines.

2. PRE-REQUISITES: Basic Engineering Practice, Introduction to Thermodynamics.

Semester VII									
Course code &	Periods/Week		Total		Examination Scheme				
course title	(i	n houi	rs)	Hours	The	ory	Pra	actical	Total
					Ma	rks	Μ	larks	Marks
SB712 Diesel	L	Т	Р	H	TH	TM	TW	PR/OR	
Engine operation &	3	-	2	80	75	25	25	25	150
maintenance									

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB712.CO1: Identify the particulars related to operation and maintenance of the diesel enginesystems.

SB712.CO2: Explain methods associated to operation and maintenance of the diesel engine systems.

SB712.CO3: Analyse the areas needing repair in the diesel engine systems.

SB712.CO4: Sketch the details related to operation and maintenance of the diesel engine systems.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	2	2	2	1	2	0	2
CO2	2	1	2	2	2	1	2	0	2
CO3	2	2	2	2	2	2	2	0	3
CO4	2	2	2	2	2	2	2	0	3

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

Relationship : Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	СО
1 DIESEL ENGINE SYSTEMS	15	9	CO1
1.1 Air intake system.			CO2
1.2Super-charging,scavenging			CO3
1.3 Cooling system. Methods of piston cooling.			CO4
1.4 Lubricating properties, need for oil change, Multigrade oil.			
Lubricating System, need for oils.			
1.6 Cylinder Lubrication.			
1.7 Fuel systems types,Systemrequirements,fuel line priming,fuel			
oils			
1.9 Starting Systems			
2 DIESEL ENGINE OPERATION	18	12	CO1
2.1 Starting of diesel engines			CO2
2.2 Operating parameters, precautions to be taken. Maintaining			CO3
records			CO4
2.4Opration of Fuel Injector,Opreration of a Governor,Operation of			
Fuel Pump and Turbocharger .			
2.4.1Attached pump, gear pump			
2.5 Crankcase ventilation, crank-case explosion			
2.6 Scavenge fire,Cylinder relief valve			-
2.7 Engine cut-out due to lubricating oil, cooling temperature and			
overspeed control			
		10	
3 DIESEL ENGINE MAINTENANCE	16	10	CO1
3.1Maintenance strategies, preventive maintenance checks			CO2
3.2Standard maintenance, Predictive Maintenance – concept and			CO3
implementation.			CO4
3.3Trouble shooting chart ,Engine tune up			

3.4Need for overhauling, diagnosis before overhauling.			7
Unit 4. Tools & spares	8	5	
4.1 Tools used such as Torque wrench spanners, feeler gauges, dial,			
gauges, bore gauges, piston expander			
4.2 Service and parts catalogues			
5 ENGINE OVERHAULING AS APPLICABLE TO MEDIUM	18	12	CO1
SPEED 4 STROKE ENGINE			CO2
5.1 Assembly and dismantling of Cylinder head			CO3
5.2 Rocker arm-valve assembly.			CO4
5.3 Piston- connecting rod assembly.			
5.4 Inspection of cylinder block, Liners.Crankshaft,Main bearings,			
Piston and rings, Valves.			
5.5 Salvaging of worn out components. Crankshaft grinding, line			
boring, honing, valve lapping.			
5.6 Safe working practices.			
5.7 Commissioning of overhauled engine.			
Total	75	48	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Diesel engine systems	09	15
2	Diesel engine operation	12	18
3	Diesel engine maintenance	10	16
4	Tools & spares	05	08
5	Engine overhauling as applicable to medium speed 4 stroke engine	12	18
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks	CO
1	Dismantling and assembly of Diesel Engine		CO1
2	Study/inspection for defects of engine components.		CO2
3	Demonstration/construction/testing of a fuel injector.		CO3

4	Engine tune-up : Adjustment of valve tappet clearance.		CO4
6	Demonstration of the use of hand tools like torque wrench etc.		
	Total	25	

LEARNING RESOURCESText Books

S. No.	Author	Title of Books	Publishers
1	Kirpal Singh	Automobile Engg.	Standard Publishers
2	D. A. Taylor.	Int. to Marine Marine	Elsevier, Delhi
3	Mathur& Sharma	A course in internal combustion	DhanpatRai
		engine	Publications

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Boyce Dwiggins	Automobile Repair Guide	Taraporewala, Mumbai
2	A.J. Wharton.	Diesel Engines	Elsevier, Delhi

(FB714) OFF SHORE STRUCTURES

1. COURSE OBJECTIVES :

New commercial sources of energy and minerals critical to human existence are being sought from the oceans due to the depletion of conventional land- based resources. Through this course students will learn the various aspects of ocean environment, types of offshore structures, materials and equipments used for construction. The installation of submarine pipeline used for transfer of oil &gas will be studied along with the repair works.

- 2. PRE-REQUISITES: Students should know
- 1. Strength of material
- 2. Welding in Ship Construction
- 3. Ship Construction Technology
- 4. Ship Repair Engineering

3. TEACHING AND EXAMINATION SCHEME

Semester VI	I								
Course code &	Per	riods/V	Veek	Total	Examination Scheme				
course title	(i	in hou	rs)	Hours	The Ma	•	·	actical Iarks	Total Marks
FB714	L	Т	Р	Н	TH	TM	TW	PR/OR	
Off Shore Structures	3	-	2	80	75	25	25	25	150

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- **FE614.CO1:** State the different types of off shore structures, buoyancy principles, materials and methods of fabrication in marine environment.
- FE614.CO2: Understand the ocean environment, installation of pipelines process underwater
- **FE614.CO3:** Choose appropriate method for laying pipelines and for erection of off shore structures
- FE614.CO4: Undertake repair and maintenance work underwater

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	1	-	-	-	2	3
CO2	1	2	2	1	-	2	2	1	3
CO3	1	2	2	1	-	2	1	2	3
CO4	1	2	1	1	2	1	2	1	2

Relationship : Low-1 Medium-2 High

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

Unit	Μ	Th	CO
		r	
1 OCEAN RESOURCES			
Minerals – poly metallic nodules, placer deposits, oil and gas, gas hydrates	4	2	CO1
2 OCEAN ENVIRONMENT			
Waves- wave height, wave period, wave direction, design wave height	8	5	CO2
Tides- different tide levels			
Currents- Variation of currents with depth.			
Wind- Variation of Wind speed and direction, wind speed during cyclones.			
Seabed characteristics- brief note on marine geotechnical investigations,			
geophysical survey, drilling and sampling procedures, in situ testing			
techniques.			
Temperature and salinity variations with dept.			
3. TYPES OF OFFSHORE STRUCTURES INCLUDING BASIC			
DESIGN			
CRITERIA			~ ~ ~ ~
Exploratory drilling structures- Jack –up-rigs, semi- submersibles, drill	16	12	CO3
ships, Productions platforms- fixed structures (gravity and piled)- compliant structures (TLP and articulated tower) Single point mooring			
system; Mention of forces acting on the structures .			
system, Mendon of forces acting on the structures .			
4. SUBMARINES PIPELINES	8	5	
Installation methods- Lay barge method, reel barge method, tow method,			CO3
pipeline trenching methods- Jetting method, mechanical cutting, fluidization			
method,			
plowing method.			
<u> </u>			
5 EQUILIBRIUM OF FLOATING BODIES			

Archimedes Principle; Buoyancy centre of Buoyancy- Metacentre- Type of equilibrium of floating body- maximum length of body floating in water, Numerical problems.	12	8	CO1
6. MATERIALS AND FABRICATION IN MARINE ENVIRONMENT Steel structures for offshore environment – types of steel and its strength requirements, fabrication and welding details- erection of structural steel- coatings and corrosion protection- Non –destructive testing of weld, concrete mixes and their proportion concept of pre- stressed concrete- placing of concrete-curing. Causes failure and of structures.	12	8	CO4
7. CONSTRUCTION TECHNOLOGY			
Marine operations- cranes-barge-derrick barges-jack-up barge, launch barges: Installation of offshore structure- steel jackets- removal of jacket from barge lifting and launching – Installation of the sea floor; Driving and underwater works: underwater concreting and grouting: Repair and maintenance of offshore structures, Repair methods- surface welding, hyper- baric welding, mechanical connectors, full encirclement sieves, flexible pipe repair .	15	8	CO3 , CO4
Total	75	48	-

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number of	Marks
No		lectures	
1	Ocean Resources	2	4
2	Ocean Environment	5	8
3	Types Of Offshore Stuctures Including	12	16
	Basic Design Criteria		
4	Submarines Pipelines	5	8
5	Equilibrium Of Floating Bodies	8	12
6	Materials And Fabrication In Marine	8	12
	Environment		
7	Construction Technology	8	15
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Rotary drilling rig and its components Power system- Hoisting system- Circulating system- Well- controlled equipment, Auxiliaries	
2	Preparing the layout drawings of different offshore platforms	
	Total	25

10. LEARNING RESOURCES Text Books

Sr. No.	Author	Title of Books	Publishers
1	Ben C. Gerwick Jr.	Construction of marine and offshore structures	A Wiley Interscience publications, John Wiley & Sons, New York Chichester Brishare, Toronto Singapore.
2	F.L.L.B Carneiro	Offshore Structure Engg-I	Gulf Publishing Co. Book Division, Houston, London, Paris, Tokyo.
3	F.L.L.B Carneiro	Offshore Structure Engg-II	Gulf Publishing Co. Book Division, Houston, London, Paris, Tokyo.
4	Charkraba rti, S.K. 1987	Hydrodynamics of offshore structures	Coputational Mechanics Publications, Southampton, Boston, 440p
5	Dawson. T.H. 1983	Offshore structural engineering	Prentice Hall Inc., Englewood Cliffs, new Jersey 346p
6	DNV,1977	Rules for the design construction and inspection of offshore structures	Det Norske Ventas, Norway,67p
7	Graff, W.J. 1981	Introduction to offshore structures: Design, fabrication, Installation.	Gulf Publishing Company, Honston, USA,345 p
8	Khurmi, R. S.1983	A textbook of Applied Mechanics	S. Chand & Company, New Delhi, 669p
9	Mousselli , A. H, 1981	Offshore pipeline design, analysis and methods	Penn well Books, Pennwell publishing Company, Oklahoma, 193 p
1 0	Poulos, H.G. ,1988	Marine Geotechnics	Unwin Hyman, London, UK, 473 p

(SB723) DEFENCE SHIP CONSTRUCTION

1. COURSE OBJECTIVE: The Government of India has initiated a much needed emphasis on being 'ATMANIRBHAR', including in the field of defense production. Many shipyards, which earlier primarily catered for commercial ship building, are gearing up for defense ship production.

This course content is designed as an elective subject for students of the VII semester of Ship building Engineering, who have a basic knowledge of merchant ships and are conversant with commercial ship construction. The aim of this course is to introduce to these students different types of warships and basic consideration for design, arrangement of spaces, special features of structural arrangement and arrangement of propulsion systems. The students will also be introduced to the special features of piping systems, outfit items, and various fighting equipment fitted on modern warships. It is intended that after this course, the students would be able to appreciate the rigors of stringent quality assurance measures followed in construction of warships and would be better prepared for initiation into shipyards building defense ships, and related industries.

- **2.** PRE-REQUISITES: Knowledge of Ship Construction Technology, Marine Engineering I.
- 3. TEACHING AND EXAMINATION SCHEME:

Semester VII									
Course code &	Periods/Week		Total	Examination Scheme					
course title	(in hours)		Hours	Theory		Practical		Total	
				Ma	rks	Μ	larks	Marks	
(SB 723) Defence	L	Τ	Р	Н	TH	TM	TW	PR/OR	
Ship Construction	3	0	2	80	75	25	25	25	150

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB723.CO1: Identify the various components of defence ship structure and outfitting.

SB723.CO2: Understand the function of defence ship structure and outfitting. SB723.CO3: Explain the constructional aspects of defence ship structure and outfitting. SB723.CO4: Sketch the various components of defence ship structure and outfitting.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	-	1	1	1	2	1
CO2	3	1	2	-	1	2	2	2	2
CO3	3	1	2	1	1	2	2	2	1
CO4	3	2	1	2	1	2	2	2	2

Relationship: Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN:

M = Marks Thr = Teaching hours CO = Course Objectives]	
Unit	Μ	Thr	CO
1 INTRODUCTION TO DEFENCE SHIP CONSTRUCTION	21	14	CO1,
1.1 Functions - Merchant ships vs Defence ships.			CO2,
1.2 Types of Defence ships.			CO3
1.3 General features of surface warships.			CO4
1.4 Procurement process of Indian Naval ships.			
1.5 Shipyard infrastructure, functions and systems - Important differences in building Defence ships from building Merchant ships.			
1.6 Quality Control, Cleanliness, Safety, Security.			
2 GENERAL ARRANGEMENTS AND STRUCTURE OF SURFACE SHIPS	18	11	CO1, CO2,
2.1 Typical arrangements and spaces in Surface ships			CO3
2.2 Design rules- Definition of terms used in design.			CO4
2.3 Damage stability considerations.			
2.4 Loads for structural design.			
2.5 Materials in defence ship construction.			
3 OUTFITTING	15	10	CO1
3.1 Deck Outfitting.			CO2
3.2 Anchoring arrangement.			CO3
3.3 Piping Systems.			CO4

3.3 HVAC.			
3.4 Fighting outfit.			_
4 PROPULSIVE MACHINERY ARRANGEMENTS	15	10	CO1
4.1 Various arrangements of propulsive machinery.	10	10	CO2
4.2 Gas turbines.			CO3
4.3 Gears and shafting.			CO4
4.4 Shock loading			
5 STEALTH FEATURES	06	03	CO1
5.1 Radar signature.			CO2
5.2 Acoustic signature.			CO3
5.3 Mechanical vibration signature.			CO4
5.4 Infrared heat (IR) signature.			
5.5 Electro-magnetic signature.			
Total	75	48	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to defence ship construction	14	21
2	General Arrangements and structure of Surface ships	11	18
3	Outfitting	10	15
4	Propulsive machinery arrangements	10	15
5	Stealth Features	03	06
	Tota	al 48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

The assignment are designed to reinforce the learning of various topics taught in the theory classes.

No	Unit	Practical	Marks	CO
1	1	Types of defence ships, Delineating the features of any one specific type.		CO1 CO2
2	2	Drawing profile of a Defence surface ship showing arrangement of spaces.		CO3 CO4
3	3	Describing with a sketch any one item of outfit.		
4	4	Explaining one propulsive machinery arrangement with a sketch.		
5	5	Explaining categories of stealth features.		
		Total	25	

10. LEARNING RESOURCESText

Book

S. No.	Author	Title of Books	Publishers
1	R. Taggart.	Ship Design & Construction	SNAME

(SB713) SHIPYARD PRACTICE

- 1. COURSE OBJECTIVE: The theory course content is framed to impart sufficient knowledge of general aspects of construction as outlined in Shipbuilding Engineering Course. The course contentis designed for students to understand the general aspects of construction as outlined in Shipbuilding Engineering Course. It is designed for students to understand fairing of lines, the subsequent marking and cutting of plates and the production practices followed in a Shipyard including safety aspects. The students should know the installation and testing of various ship's machinery, equipment & systems carried out during construction phases. The students should knowlaunching arrangements and test & trials during and on completion of hull construction.
- 2. PRE-REQUISITES: Knowledge of Ship Construction Technology, Ship Drawing and Calculation.

3. TEACHING AND EXAMINATION SCHEME:

Semester	VII									
Course code &		Peri	ods/V	Veek	Total		Exan	nination	n Scheme	
course ti	course title		n hou	rs)	Hours	The Ma	•		actical Iarks	Total Marks
(SB 713) Shij		L	Т	P	Н	ТН	TM	TW	PR/OR	
Practice	e	3	0	2	80	75	25	25	25	150

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB713.CO1: List the activities carried out in a shipyard.

SB713.CO2: Explain methods of construction of ships, machinery installation ,launching

an

drecognize safety aspects.

- **SB713.CO3:** Apply the various construction and installation techniques for ships structure, machinery and equipment.
- **SB713.CO4:** Sketch the details related to shipyard works.

Э.	MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES.										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2		
CO1	2	0	2	2	1	2	2	2	2		
CO2	2	1	1	2	1	2	3	2	2		
CO3	2	1	2	3	1	1	3	1	3		
CO4	2	1	1	0	3	3	2	1	2		

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

Relationship: Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN:

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	СО
1 HULL CONSTRUCTION & APPLICATION OF WELDING	32	20	CO1,
1.1 Fairing of lines, shell expansion and shell development.			CO2, CO3
 1.2 Marking, cutting (Manual and Computer aided). Plate preparation, template making, Construction of skids. Prefabrication, Block construction and advanced outfitting. 1.3 Erection of blocks on Building berth/ in building dock /on an inclined slipway. 1.4 Assessment of weights and position of C.G. of prefabricated units 1.5 Sequences of erection, alignment and welding, consolidation by welding, & tests. 1.6 Pre-launching activities and Launching of hull. 			CO4
1.7 Basics of FRP hull construction.			
2 MACHINERY INSTALLATION & ALIGNMENT	18	12	CO1,
2.1 Stern gear and rudder gear installation and alignment			CO2,
2.2 Machinery installation,			CO3 CO4
2.3. Installation of steering gear.			
2.4. Main propulsion shafting and engines alignment			
3 MACHINERY AND SHIP TRIALS	13	08	CO1
3.1 Process for launching of ships.			CO2 CO3
3.2 Dock trials			CO4
3.3 Inclining experiment			1
3.3 Sea trials and delivery.			1

Directorate of Technical Education, Goa State

4 PLANNING IN SHIPYARDS	06	04	CO1
4.1 Application of Flow-chart, Bar chart.			CO2 CO3
4.2 Application of PERT, CPM.			CO4
4.3 Procurement of materials and scheduling.			
5 SAFETY ASPECTS	06	04	CO1
5.1 Personal Protective equipment.			CO2 CO3
5.2 Hazards and its types Machine Hazards, Pressure vessel hazards,			CO4
Hazards in welding & gas cutting operation, Electrical hazards and			
safety requirements, Chemical hazards and Fire hazards.			
5.3 House Keeping.			1
5.4 Working in confined spaces and common explosions.			
Total	75	48	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
6	Hull Construction & Application of Welding	20	32
7	Machinery Installation & Alignment	12	18
8	Machinery and Ship Trials	08	13
9	Planning in Shipyards	04	06
10	Safety Aspects	04	06
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Unit	Practical	Marks	CO
1	1	Example of Fairing of lines.		CO1 CO2
2	1	Preparation of Shell Expansion plan		CO2 CO3 CO4
3	2	Rudder and stock Calculations		0.04
4	3	Assignment on Sea Trails		
5	4	Specimen of flow chart, bar chart – PERT & CPM		
		Total	25	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	D. A. Taylor	Merchant Ship Construction	Buttersworth
			Hienemann
2	John P. Comstock	Principles of Naval Architecture	SNAME
3	D.J Eyres	Ship Construction	Elsevier

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	R. Taggart.	Ship Design & Construction	SNAME
2	Hogg, Robert S.	Naval Architecture and Ship Construction	Institute of Maritime Engineers

(SB714) MARINE DRAWING PRACTICE

1. COURSE OBJECTIVE: The course content is designed to enable the students to sketch simple views of machine parts. The course content is designed to introduce the students to some of the many engineering components, learning to sketch them and prepare assembly drawing. These drawings thus help to represent the proper working relationships of the several components of a structure or mechanism.

2. PRE-REQUISITES: Knowledge of Maths, Science, Marine Engineering,

Semester VII									
Course code &	Periods/Week		Total	Examination Scheme					
course title	(in hours)		Hours	Theory		Practical		Total	
					Marks		Marks		Marks
SB714 Marine	L	Т	Р	H	TH	TM	TW	PR/OR	
Drawing Practice	3	-	2	80	75	25	25	25	150

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

SB714.CO1: Recognize features of a machine.

SB714.CO2: Sketch intersection details of joints.

SB714.CO3: Sketch sectional view of simple isometric/3D objects.

SB714.CO4: Relate to assembly drawing of marine components in isometric/orthographic sections and demonstrate free hand sketching of keys, nuts, couplings and similar marine components.

J. MAPPIN	3. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2			
CO1	2	1	1	1	1	1	1	1	0			
CO2	2	1	1	1	1	1	2	3	0			
CO3	2	1	1	1	1	1	2	3	0			
CO4	1	1	1	1	1	2	2	3	0			

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

Relationship :Low-1 Medium-2 High-3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	CO
1 INTRODUCTION TO MACHINE FEATURES	15	10	CO1
1.1 Conventional representation of common machine features.			CO2
1.2 To draw hexagonal headed, square headed bolt and nut.			CO3
1.3Using approximate method to draw the teeth profile of a spur gear,			CO4
and spring.			
2 INTERSECTION OF SURFACES	12	08	CO1
2.1Intersection of surfaces.			CO2
2.2Importance of intersection of objects, drawing intersection of			CO3
cylinder with cylinder to represent pipe joints.			CO4
2.3Development of pipe bend/elbow			
3 SECTIONAL VIEWS	15	10	CO1
3.1 Sectional views.			CO2
3.2 Types: Full section, Half section, Offset section, Partial section,			CO3
Removed section, Aligned section.			CO4
3.3 Sectional view of simple isometric/3D objects.			
· · · · ·			
4 ASSEMBLY DRAWING	25	16	CO1
4.1Assembly drawing: Introduction and importance.			CO2
4.2Choosing appropriate scale to draw assembly drawing full section			CO3
front view of parts shown in Orthographic section.			CO4
4.2.1Non return valve.			
4.2.2Stuffing box.			
4.2.3 Footstep bearing, IC engine piston (trunk type).			
4.2.4 IC engine piston (trunk type).			
4.3Drawing of full sectional front view assembly of parts shown			
disassembled in isometric sections.			
4.3.1Bilge suction strainer.			
4.3.2Sealed Ball joint			
4.3.3Gear pump.			
4.3.4Cylinder Relief valve.			_
5 FREE HAND SKETCHING	08	04	CO1
5.1 Keys –Sunk taper key, Saddle key, Woodruff key, Spline shaft.	1		CO2
5.2Joints- Socket and spigot joint, Universal coupling.	1		CO3
5.3Washers, eye bolt, cup headed bolt, stud, castle nut, eye foundation	1		CO4
bolt.			
Total	75	48	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. Specification table for theory/ macro-lesson plan

Unit No	Unit	Number of lectures	Marks
6	Introduction to Machine features.	10	15
7	Intersection of surfaces.	08	12
8	Sectional views	10	15
9	Assembly drawing	16	25
10	Free hand sketching	04	08
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Number of lectures	Marks	СО
1.	Assignment to draw spur gear profile.	06		CO1
2.	Assignment on Intersection of two cylinders.	08		CO2
3.	Assignment on sectional views.	06		CO3
4.	Full sectional F.V. Assembly drawings.	08		CO4
5.	To prepare free hand sketches	04		
	Total	32	25	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R. V. Mali	Mechanical Engineering Drawing	Vrinda Publication
	B. S. Chaudhari		
2	N. D. Bhatt	Machine Drawing	Charotar Publishing
		-	House
3		Reeds Engineering Drawing for	
		Marine Engineers.	

(MC601) MACHINE DESIGN

1. COURSE OBJECTIVES:

To enable the student to design and draw simple machine components used in small- and large-scale industries. To recall fundamental knowledge of applied Mechanics, Strength of Materials, Engineering Materials and Theory of Machines in designing simple machine parts and also to develop analytical abilities to give solutions to engineering design problems.

2. TEACHING AND EXAMINATION SCHEME:

Semester VII									
Course code &	Per	Periods/Week		Total	Examination Scheme				
course title	(i	(in hours)		Hours	Theory Marks		Practical Marks		Total Marks
MC601 Machine	L	Т	Р	H	TH	TM	TW	PR/OR	
Design	4	-	2	96	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- MC601.CO1: Recall the design procedures, design fundaments, modes of failures and steps indesign & selection of simple machine parts, Shafts, keys, Couplings, Power Screws, Springs, fasteners & antifriction bearings.
- MC601.CO2: Demonstrate the steps in design & selection of simple machine parts, Shafts, keys, Couplings, Power Screws, Springs, fasteners & antifriction bearings.
- **MC601.CO3:** Use design data books and different codes of design for designing machine components.
- MC601.CO4: Design and prepare part assembly drawings of simple machine parts, Shafts, keys, Couplings & Power Screws.

4. Mapp	4. Mapping Course Outcomes with Program Outcomes										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2		
CO1	2	1	1	1	1	1	2	1	1		
CO2	3	2	3	2	2	1	2	1	2		
CO3	3	2	2	3	2	1	2	0	1		
CO4	3	3	3	2	2	2	2	1	0		

4. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes]	
Unit 1	Μ	Thr	CO
Introduction to Design	12	10	
1.1 Machine Design philosophy and procedures			
1.2 General Considerations in Machine Design, Factor of safety and			CO1
factors governing the selection of factor of safety			CO2
1.3 Fundamentals: - Types of loads, concept of stress, strain, Stress-			
Strain Diagram for ductile and brittle materials, Types of Stresses,			
such as Tension, Compression, Shear, Bearing Pressure Intensity,			
Crushing, Bending and Torsion, creep Strain and Creep Curve			
1.4 Fatigue, S-N curve, Endurance limit			
1.5 Stress Concentration- Causes & Remedies			
Properties of Engineering Materials, Designation of materials as per			
IS and introduction to International Standards & advantages of			
Standardization, use of design data book, use of standards in design			
and preferred numbers series.			
1.7 Theories of Elastic Failures-maximum Principal Stress theory			
and maximum shear stress theory.			
Unit 2	Μ	Thr	CO
Design of simple machine parts	12	08	CO1
2.1 Cotter joint, knuckle joint			CO2
2.2 Design of levers: -Right angled Bell crank Lever			CO4
2.3 Design of C- Clamp, Off-set links, arms of pulley.			
Unit 3	Μ	Thr	CO
Design of Shafts, keys and Couplings, Power Screws, Springs	42	36	CO1
and fasteners			CO2
3.1 Types of shafts, Shaft materials, Standard sizes			CO3
3.2 Design of shafts (Hollow and solid) using strength and rigidity			CO4
criteria			
3.2 ASME code of design for line shafts supported between			
bearings with one or two pulleys in between.			
3.3 Design of sunk keys, Effect of keyways on strength of shaft			
3.4 Design of couplings- Muff coupling, Protected type Flange			1
Coupling.			
3.5 Thread Profiles used for Power Screws, relative merits and]
demerits of each			
3.6 Torque required to overcome thread friction, self-locking and			
overhauling conditions.			
3.7 Efficiency of power screws, types of stresses induced			
3.8 Design of Screw Jack (limited to screw, nut, Head & lever)			

2.0 Classification and amplications of appings forming.	1	T	٦
3.9 Classification and applications of springs, Spring-Terminology, Materials and specifications.			
Stresses in springs, Wahl's correction factor, Deflection of springs,			
Energy stored in springs			
3.10 Design of Helical tension and compression springs subjected to			
uniform applied loads Leaf springs-construction and application			
3.11 Stresses in Screwed fasteners, bolts of uniform strength.			
3.12 Design of bolted joints subjected to eccentric loading.			
3.13 Design of parallel and transverse fillet welds, axially loaded unsymmetrical section, Merits and Demerits of screwed and welded joints.			
Unit 4	Μ	Thr	CO
Antifriction bearings	04	05	CO1 CO3
4.1 Classification of bearings-Sliding contact and rolling contact			
4.2 Terminology of Ball bearings- life load relationship, basic static load rating and basic dynamic load rating, limiting speed. Selection of ball bearings using manufacturer's catalogue.			
Unit 5	Μ	Thr	CO
Ergonomics & Aesthetic of design	05	05	CO1
5.1 Ergonomics of design- Man-Machine relationship. Design of			CO3
Equipment for control, environment & safety.			_
5.2 Aesthetic considerations regarding shape, Size, color & surface finish.			
Total	75	64	
Total	15	τυ	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION	TABLE	FOR	THEORY/	MACRO-LESSON	PLAN
/. 01 2011 10111 1011			TITE (1(T)		

Unit No	Unit	Number of lectures	Marks
1	Introduction to Design	10	12
2	Design of simple machine parts	08	18
3	Design of Shafts, keys and Couplings, Power Screws, Springs and fasteners	36	42
4	Antifriction bearings	05	04
5	Ergonomics & Aesthetic of design	05	05
	Total	64	75

No	Practical (pract no 1,2, 5,6 and any one of 3 or 4).	Marks
1.	Assignment on selection of materials for given applications [at least five applications should be covered] using design data book. List the mechanical properties of material selected. 2 Hrs	03
2.	Problems on design of simple machine parts like Cotter Joint, KnuckleJoint, Bell Crank Lever, off – Set link, Arm of Pulley (One example oneachcomponent)withfreehandsketches.8 Hrs	05
3.	Design Project: Observe the system where transmission of power takes place through shaft, Keys, coupling, pulley and belt drive. Get the required information regarding power transmitted (power output by motor or engine etc.). By selecting suitable materials, design the shaft, key and coupling. Also select suitable Ball Bearing from Manufacture's catalogue. Prepare design report and assembly drawing indicating overall dimensions, tolerances, and surface finish. Also prepare bill of materials. (Activity should be completed in a group of five to six students) 8 Hrs	
4.	Design a power screw & draw its assembly drawing 4 Hrs	08
5.	Assignments on design of Helical Springs, Screwed joints, Welded joints [one each] with free hand sketches. (numerical problems) 2 Hrs	04
6.	CAD Drawing of minimum one machine component designed in practical No 2 should be prepared and print out should be attached along with respective drawing sheets. 8 Hrs	05
	Total	25

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

9.

10. LEARNING RESOURCES

10.1	Text Books				
S. No.	Author	Title of Books	Publishers		
1	R.S.Khurmi, J.K.Gupta	A Textbook of Machine Design	S. Chand ,2014		
2	V.B.Bhandari	Introduction to Machine Design	Tata Mc. Graw Hill,2002		
3	R.K.Jain	Machine Design	Khanna Publications, 1998		
4	Pandya & Shah	Machine Design	Dhanpat Rai & Sons, 1992		
5	PSG Coimbtore	Design Data Book	PSG Coimbtore ,2000		

AUDIT COURSE

AC101 ESSENCE OF INDIAN KNOWLEDGE AND TRADITION Course Objective:

This course aims at imparting basic principles of thought process, reasoning and inferencing by human being. Sustainability is at the core of Indian Traditional Knowledge Systems connecting society and nature. Holistic life style of Yogis, science and wisdom capsules in Sanskrit literature are also important in modern society with rapid technological advancements and societal disruptions. The course thus focuses on introduction to Indian Knowledge System, Indian perspective of modern scientific world-view, basic principles of Yoga and holistic health care system.

2. TEACHING AND EXAMINATION SCHEME

Semester	VI													
Course code	&	Peri	ods/V	Veek	Total	Examination Scheme					Examination Scheme			
course title		(in hours)			Hours	Theory Marks	Practical Marks	Total Marks						
(AC101) Essence of Indian Knowledge and Tradition		L	Т	P	Н	TH	TM	TW						
		2	-	-	32	-	-	-						
				Coi	irse Con	tent :								
Basic structure of Ind	dian Kn	owledg	ge syst	tem:										

Das	ic siluciul		I I/IIOWIG	uye sysie								
(i)	, (ii)	(,	,	,), (iii)		(,	,	
	,	,	,), (iv)	(,	,	,)		
Moc	lern Scien	ce and In	dian Kno	wledge Sy	/stemYoga							
and	Holistic H	ealth Car	е									
Cas	e studies.											

References:

S. No.	Title of Book	Author	Publication
1.	Cultural Heritage of India-	V. Sivaramakrishna	Bharatiya Vidya Bhavan, Mumbai,
	Course Material		5th Edition, 2014
2.	Modern Physics and Vedant	Swami Jitatmanand	Bharatiya Vidya Bhavan
3.	The wave of Life	Fritzof Capra	
4.	Tao of Physics	Fritzof Capra	
5.	Tarkasangraha of Annam	V N Jha	Chinmay Foundation, Velliarnad,
	Bhatta, Inernational		Amaku,am
6.	Science of Consciousness	RN Jha	Vidyanidhi Prakasham, Delhi, 2016
	Psychotherapy and Yoga		
	Practices		

(TR801) INPLANT TRAINING PHASE II

1. COURSE OBJECTIVE: The training imparted through this course should be such that the theory learned during first 7 semesters of Shipbuilding Engineering can be linked with the Industrial practices and the outcome of the inplant training should aid in enhancing students employability in industry. objective of the training is to correlate theory and practice and make the students employable in industry. Through training the students will be able to get hands on experience in the various job activities associated with ship construction, ship repair and obtain practical knowledge and experience in the installation, operation and maintenance of marine machinery. The infrastructure, equipment and practices of the ship building industry are unique and the training would enable the students to acquaint themselves with these and relate them to the theory learnt. The students will be exposed to industrial environment, obtain experience in working under factory discipline, associate with workers and understand their psychology and work habits.

2. PRE-REQUISITES: Knowledge of core subjects of Naval Architecture, Marine Engineering and ship structure.

Semester	VIII							
Course cod	e &	Total	Examination Scheme					
course title		Weeks	Termwork		Practica	Total		
			Marks			Marks		
(TR801) Inplant Training Phase II		21	Presentation	Daily Dairy	Report	Orals		
		Weeks	50	50	50	50	Grade	

3. TEACHING AND EXAMINATION SCHEME

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

TR801.CO1: Identify the layout of the yard, facilities and infrastructure, types of ships underconstruction.

TR801.CO2: Distinguish functioning of various shipbuilding departments and processes in theindustry.

TR801.CO3: Prepare technical documents related to the work undertaken or observed.

TR801.CO4: Relate and reinforce knowledge of theory concepts learnt in earlier semesters withpractical work at industry.

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	1	2	2	2	3	2	2
CO2	2	0	0	1	1	2	2	1	3
CO3	2	0	2	0	0	2	2	2	2
CO4	2	0	0	1	0	2	2	2	2

Relationship : Low-1 Medium-2 High-3

6. DETAILED CONTENTS

Unit	CO1
1 SHIPYARD PRACTICES	CO2
1.1 Material estimation	CO3 CO4
1.2 Work scheduling	
1.3 Material planning	
1.4 Material procurement	
1.5 Project management	
1.6 Quality control	
1.7Compliance with statutory requirements and classification society.	
2 FABRICATION	
2.1 Stockyard	
2.2 Steel preparation operation	
2.3 CNC steel cutting operation,	
2.4 Marking system of plates,	
2.5 Assembly	

2.6 Recording of weights.	
3 OUT-FITTING	
3.1 Engine Room machinery installation and alignment	
3.2 Commissioning of machinery and machinery trials	
3.3 Deck machinery installation	
3.4 Commissioning and trials.	
4 LAUNCHING	
4.1 Launching calculation	
4.2 Preparation for launching	
4.3 Pre-launching checks	
4.4 Precaution at launching & launching ceremonies	
4.5 Types of launching, their advantages and disadvantages.	
5 SHIP REPAIR	
5.1 Survey of hull	
5.2 Renewal of wasted areas	
5.3 Preparation of templates	
5.4 Welding procedures	
5.5 Propeller, rudder and shaft survey	
5.6 Repair procedure	
5.7 Machinery removal and replacement after repairs	
5.8 Overhauling of pumps ,pipe and valves,	

7. DAILY DAIRY: The students are required to maintain a daily diary as a day to day record of their attendance at the factory, indicating clearly the activities/jobs performed by them during the day. End of the training the daily dairy needs to be submitted for evaluation by the faculty.

8. REPORT: Doing the daily diary, the students will prepare a report detailing all the jobs activities performed at the yard and in full detail the specific projects undertaken by them. The report will also cover the layout of the yard, facilities and infrastructure, types of ships under construction, etc. The report is to be in typed format complete with illustrations and drawings.

9. GRADING

Grade	Marks
А	>270
В	Between 240 to 269
С	Between 210 to 239
D	Between 180 to 209
Е	Between 150 to 179
F	Between 120 to 149
Fails	<120