PROGRAMME STRUCTURE

FOR

DIPLOMA PROGRAMME IN

ELECTRONICS & COMMUNICATION ENGINEEERING

UNDER RATIONALISED SEMESTER SYSTEM

(IMPLEMENTED FROM ACADEMIC YEAR 2020-2021)

BOARD OF TECHNICAL EDUCATION, GOA STATE

DTE Building, Alto Porvorim, Bardez, Goa 403521 Ph. +91-832-2413571, +91-832-2412146 Fax +91-832-2413572 Email: <u>dir-dte.goa@nic.in</u>

March 2020

DIPLOMA IN ELECTRONICS & COMMUNICATION ENGINEERING

(GC101) Communication Skills

1. COURSE OBJECTIVE :

The course aims to develop Communication skills in English by improving students' ability to write ,speak, listen and read effectively. Emphasis is also laid on students' personality development, helping them to build their confidence in interpersonal / group communication.

2. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course c	Course code &		Periods/Week		Total	Examination Scheme				
course	course title		(in hou	urs)	Hours	Theory		Practical		Total
						Marks		Marks		Marks
(GC1	01)	L	Т	Р	H	TH	TM	TW	PR/OR	
Commun	ication	-	-	02	32	-	-	25	25	50
Skil	ls									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

GC101.CO1 Understand the essentials of effective Communication.

GC101CO2 Develop reading. writing, speaking, listening and effective presentation skills.

GC101.CO3 Select the appropriate mode of Communication .

GC101.CO4 Demonstrate reading. writing, speaking, listening and effective presentation skills.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	0	0	0	0	3	3	3
CO2	1	0	1	0	3	3	3
CO3	1	0	1	0	3	3	3
CO4	1	0	0	0	3	3	3

Relationship : Low-1 Medium-2 High-3

M = Marks	Phr = Practical hour	rs CO = C Outcomes	Course			
Unit	1			Μ	Phr	СО
- 01.11	NAME: F ICATION SKILLS	UNDAMENTALS	OF	-		CO1 CO2

	I -	~~~
1.1 Communication Skills fundamentals Definition, communication process, importance of Communication Skills, essentials of effective communication	0	01 CO3 CO4
1.2 Types of communication : verbal Communication and Nonverbal communication (Body language, facial expressions, gestures, eye contact, posture, dress and grooming/personal appearance, deportment, personal hygiene) Paralinguistic (Volume, pace, pitch, pauses)	0)2
1.3 Barriers to communication: physical barriers, psychological barriers and cultural barriers	0)1
2. Unit: PRESENTATION SKILLS		
2.1 Presentations: Methods and style of presentation, Importance, planning a presentation, venue selection, audience awareness (age, gender, profession background, educational and social background) time and duration, audio visual aids (OHP, LCD projector, flip charts, white/black/green board, computer, microphone)	0	02 CO2 CO3 CO4
2.2 Public speaking: preparatory steps, tips for good beginning and end, delivery style, techniques for a good speech (repetition, signs, pictures, humor), body language	0	02
3 UNIT: TECHNICAL Writing		
3.1 Report writing Functions and parts of a report, Qualities of a good report, and types: Report on any institute function, Accident report, Industrial visit Report	0)4
 3.2 Business letters Principles of effective letter writing, parts of a business letter, formats (Full block style, Semi block style, modified block style) Routine/ Generic letters (letter to the heads of the institute, letter to the heads of various departments/sections of the institute) Types of letters: Enquiry Letter, Quotation, Purchase Order, Letter of Complaint 3.3 Job application Tips for a good C.V and a Resume 		06 CO1 CO2 CO4
4 UNIT GRAMMAR	-	CO1

 4.1 Fundamentals of English writing Subject verb agreement, homonyms, homophones, homographs, articles, Punctuation, synonyms, fundamentals of sentence construction 4.2 Paragraph Writing: Developing Topics (the main idea), body (supporting sentences), conclusion, proof reading 	02	CO2 CO4
 UNIT V: LANGUAGE WORKSHOP 5.1 Reading Skills strategies to use for building vocabulary and reading fluencies (read extensively, identify new words, use of dictionary, online dictionary apps), reading comprehension, pronunciation, debate, role play, 5.2 Listening Skills How to listen effectively, listening comprehension 	- 08	CO1 CO2 CO4
5.3 Speaking skills speech, group discussion		
5.4 Writing skills précis writing, comprehension		
Total	32	

The Course will be delivered through lectures, class room interactions, videos, exercises

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		NO of lectures	Marks
1	Fundamental of Communications skills		04	-
2	Presentation Skills		04	-
3	Technical Writing		12	-
4	Grammar		04	-
5	Language workshop		08	-
		Total	32	25

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical
1.	Practical Title: Fundamental of Communications skills
i.	Comprehension
ii.	Précis writing
iii.	Self-Introduction
2	Practical Title: Presentation Skills
iv.	Extempore speech
v.	Presentation on any given Topic
3	Practical Title: Technical Writing
vi.	Accident Report
vii.	Report on Institute function
viii.	Industrial visit report

ix.	Generic letters to the heads of various department/ Sections of the institute
х.	Inquiry letter
xi.	Quotation
xii.	Purchase or supply order
xiii.	Complaint letter
xiv.	Job application
4	Grammar
XV.	Exercises in subject – verb agreement
xvi.	Exercises in use of preposition
xvii.	Exercises in use of Homophones, homonyms, homographs
xviii.	Exercises in use of punctuation
xix.	Exercises relating to correcting the sentences
XX.	Paragraph writing
5	Language workshop
xxi.	Exercises to improve Reading skills
xxii.	Exercises to improve Writing skills
xxiii.	Group discussion
xxiv.	Listening comprehension

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R. C. Sharma & Krishna	Business Correspondence and	Tata McGraw Hill
	Mohan	Technical Writing	
2	P. Prasad, Sharma, K.	The Functional aspects of	S.k. Kataria& sons
	Rajendra	communication skills	
3	SanjayKumar,Pushpa Lata	Communication Skills	Oxford University
			Press
4	A.K.Jain,A.M.Shaikh&Pra	Professional communication	S.Chand
	vin S R Bhatia	Skills	
5	Wren & Martin	High School English Grammar	S. Chand, N. Delhi
		& Composition	

10.Reference Books for further study

S. No.	Author	Title of Books	Publishers	
1	Raul R. Timm	How to make winning presentations	Sneha Printers	
2	Dale Carnegie, Training CPI	Stand and Deliver, How to become a masterful communicator and public speaker	Cox & Wyman, UK	
3	John Seely	The Oxford Guide to Effective Writing and speaking	Oxford University Press	

Autobiographies, self-help books, Audio speeches given by famous personalities **Internet and Web Resources** <u>https://www.grammarly.com/</u> <u>https://www.bbc.co.uk/programmes/articles/5QFnVy3xzT5htTh13cmP2P8/teacher-resources</u> <u>https://Ted.com</u> **Videos and Multimedia Tutorials**

https://you.tu.be/AykYRO5d_II

(GC102) Engineering Mathematics I

1. COURSE OBJECTIVE:

 The course is aimed at providing mathematical knowledge, developing computational skills and reasoning. It also helps students to think logically and in systematic manner so as to grasp mathematical concepts easily. It helps to build analytical thinking which play an important role in solving real world problems in all scientific discipline.

Semester I									
Course code &	Peri	Periods/Week		Total		Examination Scheme			
course title	(in h	ours)		hours	Theory Marks		Term Work	Total Marks	
(GC102)	L	T	P	Н	TH	TM	TW		
Engg.Maths I	4	2	-	96	75	25	25	125	

2. TEACHING AND EXAMINATION SCHEME

3.COURSE OUTCOMES:

GC102.CO1. Understand the basic mathematical concepts for Engineering applications.

GC102.CO2. Identify and use appropriate formulae for solving practical engineering

problems

GC102.CO3. Apply formulae of algebra, geometry, trigonometry and calculus for solving

problems.

GC102.CO4 . Co-relate mathematical formulae to practical problems.

4.Mapping Course Outcomes with Program Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	3	2	1	0	0	0	2
CO2	3	3	1	0	1	0	1
CO3	2	2	3	3	2	0	1
CO4	2	3	3	2	1	1	1

Relationship :Low-1 Medium-2 High-3

	Thr = Teaching hours	CO =	Course		1	
	1 in – Teaching hours	Objectives	Course			
Unit				Ma rks	Thr	СО
1 MATHEM	IATICS FUNDAMENTA	L		8	6	CO1
v	hials: Types of polynomi ation to be asked), Multip ials	,	,	3	2	-
geometri one, two and three	aic equations: Different typ c meaning(line,circle paral and three variables and so e variables c equations and nature of th	oola only), equal olving equation	ations with	3	2	
1.3: Logarit base'10'	thm: Definition of log, log, log and antilog , prob	log with bas		2	2	
	T LINES AND CIRCLE	S		15	14	CO1,
2.1: Straight	line: Intercept, slope, inter	rsection of line	s	8	7	CO4
points form, j	line: 1. Slope intercept for parallel and perpendicular l r distance of a point from l	lines, angle bet				
-	circle as a locus, Centre, dia		of a circle	7	7	-
	circle: Centre radius form			,	/	
3. TRIGON	OMETRY					CO1, CO3
and related su 3.2: Trigonor 3.3: Trigonor 3.4: Product f 3.5: Sum and 3.6: Multiple	nd measurement, degree and ums, arc length and area of metric ratios and identities metric ratios of compound a formulae sinA <u>+</u> sinB, cosA <u>s</u> difference formulae angle 2A, and their trigono e, Cosine rule in triangle, so	sector and sum and allied angle +cosB ometric ratios,	1S ES	12	15	

4: MENSURATION	10	6	CO1,
 4.1: Areas of 2D figures like quadrilaterals, circle triangle etc (no questions to be asked) 4.2: Surface area and volumes of cube, sphere, cylinder, cone, (no question to be asked) Surface areas and volumes of prism, pyramid, 4.3: Frustum of cone, pyramid and their surface areas and volumes. 4.4: Simpson's 1/3 rd rule for area and volume 			CO4
5 :CALCULUS	30	23	CO1,
 5.1:Limits 5.1.1 : Pre requisite : Sets , intervals, relation and function (no questions to be asked) 5.1.2 : Limit of a function , algebraic properties of limits 5.1.3: Limits of algebraic, trigonometric, exponential, logarithmic functions 	7	6	CO2, CO3, CO4
 5.2 : Derivatives 5.2 .1: Derivative definition by first principle (no question to be asked) 5.2.2: Standard formulae, Algebraic properties of derivative (u±v) etc. 5.2.3: Derivatives of algebraic, trigonometric, exponential, logarithmic functions 5.2.4: Derivative of product of functions (uv rule). 5.2.6: Derivative of quotient of functions (u/v rule) 5.2.7: Derivative of composite functions 5.2.8: Derivative of parametric functions 5.2.9: Derivative of implicit functions 5.2.10: Logarithmic differentiations 5.2.11: Second order derivatives (no question to be asked) 	15	12	
 5.3 : Applications of derivatives 5.3.1: Application to the geometry: i) derivative as a slope of a tangent ii) to find equations of tangent and normal at given point on the curve 5.2.2. 	8	5	
 5.3.2: Application to the Linear motion:i) displacement, velocity, acceleration 5.3.3: Application to the rate measure i) to find rate change in area and volume etc 5.3.4: Maxima and minima 	75	64	
Total	75	64	

The Course will be delivered through lectures, class room interactions, exercises

Unit No	Unit	Number of lectures	Marks
1	Mathematics Fundamental	06	8
2	Straight line and circle	14	15
3	Trigonometry	15	12
4	Mensuration	06	10
5	Calculus	23	30
	Total	64	75

7. SPECIFICATION TABLE FOR THEORY

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

- Tutorial books should be maintained by students (5 marks)
- Two home assignments per semester (5 marks)

The Two assignments each comprises of thirty questions which includes 15 short questions and fifteen long questions. First assignment will cover fifty percent of syllabus

and second assignment will cover remaining portion of syllabus

• Topic-wise class assignment (15 marks)

Class assignment comprises of ten short and ten long questions.

9. LEARNING RESOURCES

Text Books

ICAU	CONS		
S. No.	Title of Books	Author	Publishers
1	Mathematics for Polytechnic Students(Basic Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune
2	Mathematics for Polytechnic Students(Engineering Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune
3	S.B. Gore, M.B.Patil, S.P. Pawar	Applied Mathematics	Vrinda Publications

S. No.	Title of Books	Author	Publishers
1	Applied Mathematics I	Dr. U.B.Jangam, K.P. Patil, Nalini Kumthekar	Nandu Printers& Publishers pvt. Ltd. Mumbai
2	Applied Mathematics for Polytechnics	H.K. Dass	CBS Publishers and distributers Pvt.Ltd. ,Pune
3	Set Theory and related topics	Seymour Lipschutz	McGraw-Hill

Reference Books for further study

(GC103) APPLIED PHYSICS-I

1.COURSE OBJECTIVE :

On successful completion of the course, Students completing the Applied Physics I course will be able to demonstrate competency and understanding of the basic concepts found in, Units and Dimensions, Kinematics of motion in one dimension Force Work Power and Energy, Circular Motion and Gravitation, Properties of Matter and Heat and will be able to utilize the knowledge to demonstrate competency with experimental methods that are used to discover and verify the concepts related to content knowledge

2. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course code	&	Per	riods/\	Week	Total	Examination Scheme				
course title	•	(i	in hou	irs)	Hours	The	ory	Pra	actical	Total
						Ma	rks	Μ	larks	Marks
(GC103) App	lied	L	Т	Р	Η	TH	TM	TW	PR/OR	
Physics I		03	0	02	80	75	25	25	-	125

3.COURSE OUTCOMES:

GC103.CO1: Understand the Fundamental concepts of physical quantities, Force, Power, Energy, Motion, Matter and heat transfer used in Engineering applications.

GC103.CO2: Explain the concepts of Dimensions, Work, Power, Energy ,Motion, properties of matter and heat transfer

GC103.CO3: Apply the Knowledge of Physical quantities, Types of motions, Force, work ,Power, properties of matter and heat transfer in Engineering applications

GC103. CO4: Analyze different types of Physical quantities, motions, properties of matter, and modes of heat transfer

4. Mapping Course Outcomes with Program Outcomes

Relationship: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn& Testing	Engg. Practices for Society,Sustainabilit y& Environment	Project Management	Life -long Learning
CO 1	3	1	1	3	2	0	3
CO 2	3	1	2	3	0	0	3
CO 3	3	1	2	2	0	1	1
CO 4	1	1	2	2	0	1	1

UnitThrMCO1 UNIT NAME: UNITS AND DIMENSIONS0812CO1,1.1 Fundamental and Derived units ,CO2,CO2,1.2 Different system of units, SI unit conversion from one system to other,CO3,1.3 Principle of Homogeneity,CO41.4 Dimensions, dimensional formula,CO41.5 dimensonal correctness of given equation using dimensionsCO41.6 least count of vernier calliper and screw gaugeCO41.7 zero errors in case of vernier calliper and screw gaugeCO41.8 Types of error.CO42. UNIT NAME: MOTION IN ONE DIMENSION, FORCE,1016 WORK,POWER AND ENERGYCO3,2.1 Distance and displacement,CO3,	M = Marks Thr = Teaching hours CO = Course Outcomes			
1.1 Fundamental and Derived units , CO2, 1.2 Different system of units, SI unit conversion from one system to other, CO3, 1.3 Principle of Homogeneity, CO4 1.4 Dimensions, dimensional formula, CO4 1.5 dimensonal correctness of given equation using dimensions CO4 1.6 least count of vernier calliper and screw gauge CO4 1.7 zero errors in case of vernier calliper and screw gauge CO4 1.8 Types of error. CO3, 2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE, 10 16 CO1, CO2, 2.1 Distance and displacement, CO3, 2.2 Scalar and Vectors CO4 2.3 Speed and Velocity, Uniform Velocity, , CO4 2.4 Uniform acceleration Que to gravity CO4 2.5 Equation of motion (v=u+at, v ² =u ⁴ +2as, s=ut+1/2at ²)(no derivation) CO4 2.6 Motion under gravity. Force and its unit. CO3, 2.7 Work and its unit. Energy, law of conservation of energy, CO3, 2.8. Kinetic and Potential energy equation and Gravitation 10 16 3.1 Unifrom circular motion, CO3, CO4 3.2 Definition angular displacement, angular velocity, radial acceleration due to gravity. CO3, <th>Unit</th> <th>Thr</th> <th>Μ</th> <th>CO</th>	Unit	Thr	Μ	CO
1.2 Different system of units, SI unit conversion from one system to other, CO3, 1.3 Principle of Homogeneity, CO4 1.4 Dimensions, dimensional formula, CO4 1.5 dimensonal correctness of given equation using dimensions CO4 1.6 least count of vernier calliper and screw gauge CO4 1.7 zero errors in case of vernier calliper and screw gauge CO3, 1.8 Types of error. CO3, 2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE, 10 16 WORK,POWER AND ENERGY CO3, 2.1 Distance and displacement, CO3, 2.2 Scalar and Vetors CO4, 2.3 Speed and Velocity, Uniform Velocity, , CO4, 2.4 Uniform acceleration, acceleration due to gravity CO4, 2.5 Equation of motion (v=u+at, v ² =u ² +2as, s=ut+1/2at ²)(no derivation) CO4, 2.6 Motion under gravity. Force and its unit. CO3, 2.7 Work and its unit. Energy, law of conservation of energy, CO3, 3.0 UNIT NAME: Uniform Circular Motion and Gravitation 10 16 3.1 Unifrom circular motion, CO3, CO3, 3.2 Definition angular displacement, angular velocity, , CO3, CO3, 3.6 Newtons law of gravitation, accel	1 UNIT NAME: UNITS AND DIMENSIONS	08	12	CO1,
1.3 Principle of Homogeneity. CO4 1.4 Dimensions, dimensional formula, Image: Cost of the second	1.1 Fundamental and Derived units,			CO2,
1.3 Principle of Homogeneity. CO4 1.4 Dimensional, dimensional formula, Image: Cost of the second secon	1.2 Different system of units, SI unit conversion from one system to other,			CO3,
1.5 dimensonal correctness of given equation using dimensions I.6 least count of vernier calliper and screw gauge I.7 zero errors in case of vernier calliper and screw gauge I.7 zero errors in case of vernier calliper and screw gauge I.7 zero errors in case of vernier calliper and screw gauge 1.8 Types of error. I.8 Types of error. I.8 Zero errors in case of vernier calliper and screw gauge I.7 zero errors in case of vernier calliper and screw gauge 2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE, 10 I.6 CO1, CO2, CO3, CO3, CO3, CO3, CO3, CO4, CO3, CO4, CO4, CO4, CO4, CO4, CO4, CO4, CO4	1.3 Principle of Homogeneity,			CO4
1.5 dimensonal correctness of given equation using dimensions I.6 least count of vernier calliper and screw gauge I.7 zero errors in case of vernier calliper and screw gauge I.7 zero errors in case of vernier calliper and screw gauge I.7 zero errors in case of vernier calliper and screw gauge 1.8 Types of error. I.8 Types of error. I.8 Zero errors in case of vernier calliper and screw gauge I.7 zero errors in case of vernier calliper and screw gauge 2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE, 10 I.6 CO1, CO2, CO3, CO3, CO3, CO3, CO3, CO4, CO3, CO4, CO4, CO4, CO4, CO4, CO4, CO4, CO4	1.4 Dimensions, dimensional formula,			
1.6 least count of vernier calliper and screw gauge 1.7 zero errors in case of vernier calliper and screw gauge 1.8 Types of error. 1.8 Types of error. 10 CO1, 2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE, 10 I6 CO1, WORK,POWER AND ENERGY CO3, 2.1 Distance and displacement, CO3, 2.2 Scalar and Vectors CO4, 2.3 Speed and Velocity, Uniform Velocity, . 2.4 Uniform acceleration due to gravity CO4, 2.4 Uniform acceleration, acceleration due to gravity 2.2 CO4 2.5 Equation of motion (v=u+at, v ² =u ² +2as, s=ut+1/2at ²)(no derivation) CO4, 2.6 Motion under gravity. Force and its unit. CO3, 2.7 Work and its unit. Energy, law of conservation of energy, CO4, 2.8 Kinetic and Potential energy equation and examples. 3.3 3.1 Unifrom circular motion, CO2, 3.2 DEfinition angular displacement, angular velocity, . CO3, 3.3 Conversion from rpm to rad/sec,v=reo, tangential velocity, radial acceleration CO4, 3.4 Centripetal force and centrifugal force, examples, CO4, 3.5 Banking of roads, superelevation, expression for angle of banking CO4, 3.6 Newtons law of gravitation, acceleration due to gravity , CO4,				
1.7 zero errors in case of vernier calliper and screw gauge Image: Constant Science of Constent Science of Constent Science of Constant Science of Constant S				
1.8 Types of error. Image: Constraint of the second s				
2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE, 10 16 CO1, WORK,POWER AND ENERGY 2.1 Distance and displacement, CO3, CO3, CO3, CO3, CO3, CO3, CO3, CO3,				
2.1 Distance and displacement, CO3, 2.2 Scalar and Vectors CO4 2.3, Speed and Velocity, Uniform Velocity, , CO4 2.4 Uniform acceleration, acceleration due to gravity CO4 2.5 Equation of motion (v=u+at, v ² =u ² +2as, s=ut+1/2at ²)(no derivation) CO4 2.6 Motion under gravity. Force and its unit. CO3, 2.7 Work and its unit. Energy, law of conservation of energy, CO4 2.8. Kinetic and Potential energy equation and examples. CO3, 3. UNIT NAME: Uniform Circular Motion and Gravitation 10 16 3.1 Unifrom circular motion, CO3, CO3, 3.2 Definition angular displacement, angular velocity, , CO3, 3.3 Conversion from rpm to rad/sec,v=ro, tangential velocity, radial acceleration CO4 3.4 Centripetal force and centrifugal force, examples, CO4 3.5 Banking of roads, superelevation, expression for angle of banking CO4 3.6 Newtons law of gravitation and expression (no derivation) CO4 4.1 Elasticity , CO4 4.2 Stress, Strain, Hooke's law, CO3, 4.3 Youngs Modulus, CO4 4.4 Bulk Modulus, Rigidity Modulus, CO4 4.5 Stress v/s Strain graph CO4	2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE,	10	16	CO1, CO2.
2.2 Scalar and Vectors CO4 2.3, Speed and Velocity, Uniform Velocity, .				
2.3, Speed and Velocity, Uniform Velocity, ,	2.2 Scalar and Vectors			-
2.4 Uniform acceleration, acceleration due to gravityImage: constraint of the second sec				1
2.5 Equation of motion (v=u+at, v ² =u ² +2as, s=ut+1/2at ²)(no derivation)				1
2.6 Motion under gravity. Force and its unit.				_
2.7 Work and its unit. Energy, law of conservation of energy,				_
2.8. Kinetic and Potential energy equation and examples. 10 16 CO1, 3. UNIT NAME: Uniform Circular Motion and Gravitation 10 16 CO1, 3.1 Unifrom circular motion, CO3, CO3, 3.2 Definition angular displacement, angular velocity, , CO3, 3.3 Conversion from rpm to rad/sec,v=rω, tangential velocity, radial acceleration CO4 3.4 Centripetal force and centrifugal force, examples, CO4 3.5 Banking of roads, superelevation, expression for angle of banking CO4 3.6 Newtons law of gravitation, acceleration due to gravity, Soft acceleration 3.7 Expression for acceleration due to gravity. Escape velocity, Critical velocity, and periodic time definition and expression (no derivation) CO4 3.8. Sattellite, types(Geosationary,communication remote sensing) CO4 4. UNIT NAME: PROPERTIES OF MATTER 10 16 4.1 Elasticity, CO3, 4.2 Stress, Strain,Hooke's law, CO3, 4.3 Youngs Modulus, CO4 4.4 Bulk Modulus, Rigidity Modulus, CO4 4.5 Stress v/s Strain graph 4.6 Yield point, breaking stress,factor of safety, , 4.7 Surface tension definition and example 4.8. Adhesive and cohesive force, application, 4.9 liquid miniscus and an				-
3. UNIT NAME: Uniform Circular Motion and Gravitation1016CO1,3.1 Unifrom circular motion,				-
3.1 Unifrom circular motion, CO2, 3.2 Definition angular displacement, angular velocity, , CO3, 3.3 Conversion from rpm to rad/sec,v=ro, tangential velocity, radial acceleration CO4 3.4 Centripetal force and centrifugal force, examples, CO4 3.5 Banking of roads, superelevation, expression for angle of banking CO4 3.6 Newtons law of gravitation, acceleration due to gravity , CO4 3.7 Expression for acceleration due to gravity. Escape velocity, Critical velocity, and periodic time definition and expression (no derivation) 3.8. Sattellite, types(Geosationary,communication remote sensing) 10 4. UNIT NAME: PROPERTIES OF MATTER 10 4.1 Elasticity , CO3, 4.2 Stress, Strain,Hooke's law, CO3, 4.3 Youngs Modulus, CO3, 4.4 Bulk Modulus, Rigidity Modulus, CO3, 4.5 Stress v/s Strain graph CO4 4.6 Yield point, breaking stress,factor of safety, , CO4 4.7 Surface tension definition and example 4. 4.8. Adhesive and cohesive force, application, 4. 4.9 liquid miniscus and angle of contact, capillarity, CO4		10	16	CO1
3.2 Definition angular displacement, angular velocity, , CO3, 3.3 Conversion from rpm to rad/sec, v=ro, tangential velocity, radial acceleration CO4 3.4 Centripetal force and centrifugal force, examples, Sont acceleration 3.5 Banking of roads, superelevation, expression for angle of banking Sont acceleration 3.6 Newtons law of gravitation, acceleration due to gravity , Sont acceleration 3.7 Expression for acceleration due to gravity. Escape velocity, Critical velocity, and periodic time definition and expression (no derivation) Sont acceleration 3.8. Sattellite, types(Geosationary, communication remote sensing) 10 16 4. UNIT NAME: PROPERTIES OF MATTER CO3, CO2, CO2, CO3, CO3, CO3, CO4, CO3, CO4, CO3, CO4, CO4, CO4, CO4, CO4, CO4, CO4, CO4		10	10	
3.3 Conversion from rpm to rad/sec,v=ro, tangential velocity, radial acceleration CO4 3.4 Centripetal force and centrifugal force, examples,	,			
acceleration 3.4 Centripetal force and centrifugal force, examples, 3.5 3.5 Banking of roads, superelevation, expression for angle of banking 3.6 3.6 Newtons law of gravitation, acceleration due to gravity , 3.7 3.7 Expression for acceleration due to gravity. Escape velocity, Critical velocity, and periodic time definition and expression (no derivation) 3.8 3.8. Sattellite, types(Geosationary,communication remote sensing) 4. 4. UNIT NAME: PROPERTIES OF MATTER 10 16 4.1 Elasticity , C03, 4.2 Stress, Strain,Hooke's law, C03, 4.3 Youngs Modulus, 4.4 4.4 Bulk Modulus, Rigidity Modulus, 4.5 Stress v/s Strain graph 4.6 Yield point, breaking stress,factor of safety, , 4.7 Surface tension definition and example 4.8. Adhesive and cohesive force, application, 4.9 liquid miniscus and angle of contact, capillarity,				· · · · ·
3.4 Centripetal force and centrifugal force, examples,				001
3.5 Banking of roads, superelevation, expression for angle of banking				
3.6 Newtons law of gravitation, acceleration due to gravity,				-
3.7 Expression for acceleration due to gravity. Escape velocity, Critical velocity, and periodic time definition and expression (no derivation) 10 16 3.8. Sattellite, types(Geosationary,communication remote sensing) 10 16 CO1, 4. UNIT NAME: PROPERTIES OF MATTER 10 16 CO2, 4.1 Elasticity , CO3, CO3, 4.2 Stress, Strain,Hooke's law, CO3, 4.3 Youngs Modulus, 4.4 Bulk Modulus, Rigidity Modulus, 4.5 Stress v/s Strain graph 4.6 Yield point, breaking stress,factor of safety, , 4.7 Surface tension definition and example 4.8. Adhesive and cohesive force, application, 4.9 liquid miniscus and angle of contact, capillarity,				-
velocity, and periodic time definition and expression (no derivation)Image: style s				
3.8. Sattellite, types(Geosationary,communication remote sensing)1016CO1,4. UNIT NAME: PROPERTIES OF MATTER1016CO2,4.1 Elasticity ,CO3,CO3,4.2 Stress, Strain,Hooke's law,CO3,4.3 Youngs Modulus,CO4,4.4 Bulk Modulus, Rigidity Modulus,4.5 Stress v/s Strain graph4.6 Yield point, breaking stress,factor of safety, ,4.7 Surface tension definition and example4.8. Adhesive and cohesive force, application,4.9 liquid miniscus and angle of contact, capillarity,				
4. UNIT NAME: PROPERTIES OF MATTER1016CO1,4.1 Elasticity ,CO2,4.2 Stress, Strain,Hooke's law,CO3,4.3 Youngs Modulus,CO44.4 Bulk Modulus, Rigidity Modulus,CO44.5 Stress v/s Strain graph4.6 Yield point, breaking stress,factor of safety, ,4.7 Surface tension definition and example4.8. Adhesive and cohesive force, application,4.9 liquid miniscus and angle of contact, capillarity,I0				-
4.1 Elasticity ,CO2,4.2 Stress, Strain,Hooke's law,CO3,4.3 Youngs Modulus,CO44.4 Bulk Modulus, Rigidity Modulus,CO44.5 Stress v/s Strain graph4.6 Yield point, breaking stress,factor of safety, ,4.7 Surface tension definition and example4.8. Adhesive and cohesive force, application,4.9 liquid miniscus and angle of contact, capillarity,CO4		10	16	CO1.
4.2 Stress, Strain,Hooke's law,CO3,4.3 Youngs Modulus,CO44.4 Bulk Modulus, Rigidity Modulus,CO44.5 Stress v/s Strain graph4.6 Yield point, breaking stress,factor of safety, ,4.6 Yield point, breaking stress,factor of safety, ,4.7 Surface tension definition and example4.8. Adhesive and cohesive force, application,4.9 liquid miniscus and angle of contact, capillarity,				
4.3 Youngs Modulus,CO44.4 Bulk Modulus, Rigidity Modulus,4.4 Bulk Modulus, Rigidity Modulus,4.5 Stress v/s Strain graph4.5 Stress v/s Strain graph4.6 Yield point, breaking stress, factor of safety, ,4.7 Surface tension definition and example4.8. Adhesive and cohesive force, application,4.9 liquid miniscus and angle of contact, capillarity,			1	
4.4 Bulk Modulus, Rigidity Modulus, 4.4 Bulk Modulus, Rigidity Modulus, 4.5 Stress v/s Strain graph 4.5 Stress v/s Strain graph 4.6 Yield point, breaking stress, factor of safety, , 4.6 Yield point, breaking stress, factor of safety, , 4.7 Surface tension definition and example 4.8 Adhesive and cohesive force, application, 4.9 liquid miniscus and angle of contact, capillarity, 4.9 Stress v/s S				
4.5 Stress v/s Strain graph				
4.6 Yield point, breaking stress, factor of safety, , 4.7 Surface tension definition and example 4.7 Surface tension definition and example 4.8 Adhesive and cohesive force, application, 4.9 liquid miniscus and angle of contact, capillarity, 4.9 Surface tension				1
4.7 Surface tension definition and example				1
4.8. Adhesive and cohesive force, application, 4.9 liquid miniscus and angle of contact, capillarity,				1
4.9 liquid miniscus and angle of contact, capillarity,				1
				1
The Expression for surface tension (no derivation), applications, viscoetty,			1	1
4.11 Definition velocity gradient newtons law of viscocity terminal	4.11 Definition velocity gradient, newtons law of viscocity, terminal			1

velocity, stokes law,			
4.12 Streamline flow and turbulent flow, critical velocity, application of			
viscocity. 5. UNIT NAME: HEAT	10	15	CO1
	10	15	CO1,
5.1 Statements of boyles law, charles law, gay lussacs law			CO2,
5.2 General gas equation, specific heat definition and unit, Latent heat			CO3,
definition and unit			CO4
5.3 Modes of transfer of heat, conduction, convection and radiation,			
5.4 Conduction of heat through a metall rod,			
5.5 Variable and Steady state			
5.6 law of thermal conductivity (With Derivation)			
5.7 Applications of thermal conductivity, ,			
5.8. Thermal expansion of solids			
5.9 linear expansion, superficial expansion,			
5.10 Cubical Expansion			
5.11 Realtion betwenn α, β, γ (no derivation)			
5.12 Engineering applications of expansion of solids.			

The Course will be delivered through lectures, class room interactions, exercises and case studies. **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit No	Unit	Number of lectures	Marks
1	UNITS AND DIMENSIONS	8	12
2	MOTION IN ONE DIMENSION, FORCE, WORK AND	10	16
	ENERGY		
3	UNIFORM CIRCULAR MOTION AND GRAVITATION	10	16
4	PROPERTIES OF MATTER	10	16
5	HEAT	10	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS

No	Practicals	Marks
1.	Basic Conversion Techniques from one system of units to the other	25
2.	Use of Vernier callipers to find the Volume of Hollow cylinder, Block	25
3.	Use of Screw gauge to find the cross-sectional area of a wire and	25
	thickness of a clip	
4.	To find the Coefficient of Viscosity of a given liquid by stokes method	25
5.	To Find the coefficient of Thermal Conductivity by Searle's Method	25
6	To Find the Surface Tension of a given liquid by capillary rise method	25
7	To Find Young's Modulus by Searles Method	25
8	To Find acceleration due to gravity by simple pendulum method.	25
	Total (Average)	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	B G Dhande	Applied Physics of Polytechnics	Pune Vidyarthi Griha
			Prakashan
2	Bhandarkar	Applied Physics of Polytechnics	Vrinda publication
3	R K Gaur and S L	Engineering Physics	Dhanpat Rai & Sons
	Gupta		Delhi
4	Dr. Vasudev R	A Text Book of Applied Physics for	Broadway Publishing
	Bhagwat	Polytechnics	House
5	B L Thereja	Engineering Technology	S. Chand

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Halliday D and	Physics Part I-II	Wiley Eastern Ltd.
	Resnick		
2	Satish k. Gupta	ABC of Physics I&II	Modern Publisher
3	Saxena HC and	Applied Physics Vol I & II	S. Chand Publisher
	Singh Prabhakar		

(GC104) Applied Chemistry

1. COURSE OBJECTIVE:

Chemistry is the branch of Science which deals with the study of composition, properties and changes in matter. An understanding of the basic concepts of Applied Chemistry, chemical principles and chemical properties of materials is essential to all the engineers. The emphasis is on applying the knowledge of principles of chemistry in all the fields of engineering wherein students appreciate the significance of chemistry in day to day life. The subject develops in students the habit of scientific enquiry, the ability to investigate cause and effect relationship & the ability to interpret & analyze the results.

2. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course code &		Peri	ods/V	Veek	Total		Exan	nination	n Scheme	
course title		(iı	ı hour	rs)	Credits (Hours)	The Ma	v		actical [arks	Total Marks
(GN104) Appli	ied	L	Т	Р	Н	TH	TM	TW	PR/OR	
Chemistry		3	-	2	80	75	25	25	-	125

3. COURSE OUTCOMES:

- GC 104.CO1: Understand the fundamental concepts of Atomic Structure, electrochemistry, water quality, corrosion and polymers.
- GC 104.CO2: Explain the process of Chemical bonding, water softening, electroplating, corrosion control and polymerization
- GC 104.CO3: Relate the principles of Chemical Bonding, Electrolysis, water hardness for domestic and Industrial applications and properties of polymers.
- GC 104.CO4: Distinguish between types of Chemical bonding, Water softening methods, corrosion control methods, different processes of metal coating and different polymers.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentin g& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	3	2	1	1	2	1	1
CO2	2	3	2	1	3	1	2
CO3	3	2	2	2	3	1	2
CO4	3	2	2	2	2	1	1

Relationship : Low-1 Medium-2 High-3

M = Marks Thr = Teaching hours CO = Course Objectives									
Unit	Mks	Thr	CO						
UNIT 1.0 : ATOMIC STRUCTURE AND CHEMICAL BONDING	15	10	CO1 CO2						
 1.1 <u>Atomic Structure</u> 1.1.1 Fundamental particles and their characteristics. 1.1.2 Energy levels - Definition & designation 1.1.3 Sub Energy levels- Definition & designation 1.1.4 Orbital – Concept & shape (s and p only) 			CO3 CO4						
 1.2 <u>Quantum numbers</u> 1.2.1 Designation, definition, values. 1.3 Electronic distribution (Elements from atomic Number 1-20) 1.3.1 Bohr – Bury's laws for distribution of electrons in shells (1st three 									
 laws only) 1.3.2 Aufbau Principle. for distribution of electrons in sub-shells 1.3.3 Pauli's Exclusion Principle. 1.3.4 Hund's Rule of maximum multiplicity 1.3.5 Orbital Electronic Configuration of elements (from atomic numbers 1 to 20 only). 									
 1.4 Chemical Bonding 1.4.1 Lewis and Longmuir concept of stable configuration. 1.4.2 Electrovalent - Bond - Concept Formation of Electrovalent Compound (NaCL & MgO) 1.4.3 Covalent Bond - Concept Formation of Colvalent Compounds (Cl₂, O₂, N₂) 1.4.4 Co-ordinate Bond - Concept Formation of Co-ordinate Compounds (O₃) 1.4.5 Properties of Electrovalent, Colvalent & Co-Ordinate compounds. 									
UNIT 2.0 : WATER	15	10	CO1						
 2.1 Hardness of Water 2.1.1 Soft and Hard Water - Concept Soap Test (Chemical Equation not expected) 2.1.2 Causes of Hardness 2.1.3 Types of Hardness 2.1.4 Degree of Hardness & Units of Hardness (mg/L & ppm) 			CO2 CO3 CO4						
2.2 Disadvantages of Hard Water2.2.1 Domestic PurposeDrinking, cooking, Washing & Bathing.									

	r		
2.2.2 Industrial Purpose			
(Paper Industry, Textile & Dyeing Industry, Sugar Industry, Bakery & Concrete Making)			
2.2.3 Boilers- Steam Generation Purpose.			
Sludge formation – causes & Disadvantages (No chemical equation			
expected)			
2.3 Water Softening			
2.3.1 Zeolite and Ion Exchange process of water softening			
2.4 Desalination of water			
2.4.1 Electrodialysis & Reverse Osmosis process.			
2.4.2 pH- Concept, pH scale & Importance of pH			
UNIT 3.0 : ELECTROCHEMISTRY	12	08	CO1
			CO2
3.1 Electrolytic dissociation			CO3
3.1.1 Arrhenius theory of Electrolytic dissociation			CO4
3.1.2 Factors affecting degree of Ionization- nature of solute, nature of			
solvent, concentration			
of solution and temperature.			
3.2 Electrolysis			
3.2.1 Mechanism of Electrolysis.			
Ionization Reactions			
Reactions at cathode, Activity series of Cations.			
Reactions at Anode, Activity series of Anions.			
3.2.2 Electrolysis of			
Molten NaCl using Carbon Electrodes.			
Aqueous NaCl using Platinum Electrodes.			
Aqueous $CuSO_4$ using Platinum Electrodes.			
Aqueous CuSO4 using copper Electrodes.			
3.3 Electrochemical series – Definition and Significance			
UNIT 4.0 : CORROSION AND ITS CONTROL	25	14	CO1
4.1 Dry /Direct Chemical corrosion			CO2
4.1.1 Definition			CO3
4.1.2 Oxidation corrosion			CO4
4.1.3 Corrosion due to other gases.			
4.3 Types of Electrochemical corrosion.			
4.3.1 Galvanic Cell corrosion			
4.3.2 Concentration cell corrosion(Metal ion concentration & differential			
Aeration)			

4.4 Corrosion Control			
Protection of metals by:			
4.4.1. Using Pure Metals & Metal alloys			
4.4.2 Proper designing			
4.4.3 Modifying the environment (De- aeration, Deactivation,			
Dehumidification, Alkaline neutralization)			
4.4.4 Cathodic protection (Sacrificial anode and Impressed current			
cathodic protection)			
4.4.5 Metal Coating (Galvanizing, Tinning, Metal-Spraying,			
Electroplating & powder coating)			2 01
	08	06	CO1
UNIT 5: POLYMERS			CO2
5.1 Concept of Monomers & Polymers			CO3
			CO4
5.2 Polymerization- Definition.			
5. 2.1 Addition polymerization-Definition.			
5.2.2 General equation of polymerization of :-			
Ethylene to Polyethylene.			
Vinyl chloride to Polyvinylchloride			
Tetra fluoro ethylene to Poly tetra fluoroethylene(PTFE)			
5.2.3 Condensation Polymerization-Definition			
5.2.4 General Equation for formation of Phenol formaldehyde Resin.			
5.3 Plastics.			
5.3.1 Types of plastic (Thermosetting and Thermo softening), Examples			
5.3.2 Properties and applications of Poly-ethylene, PVC, polystyrene,			
Nylons, Bakelite & silicones.			
5.4 Rubber			
5.4.1 Natural Rubber			
5.4.2 Drawbacks of Crude rubber.			
5.4.3 Vulcanization of Rubber (General Equation)			
5.4.4 Rubber examples.			
5.4.5 Properties of Synthetic Rubber & related applications.			
	I		

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Mark s
1	ATOMIC STRUCTURE AND CHEMICAL BONDING	10	15
2	WATER	10	15
3	ELECTROCHEMISTRY	08	12
4	CORROSION & IT'S CONTROL	14	25
5	POLYMERS	06	08
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical							
	Practical Title							
1.	Double Acid-Base Titration using Phenolphthalein.							
2.	Acid- Base titration using Methyl orange.							
3.	Redox Titration of KMnO ₄ soln., FeSO ₄ soln. and Oxalic acid							
4.	Determination of degree of Hardness by E.D.T.A method.							
5.	Determination of Total Alkalinity of water sample.							
6.	Determination of Chloride content of water sample by Mohr's method.							
7.	pH- Metric titration.							
8.	Conduct metric Titration.							
9.	Determination of Conductivity of water samples from different water body sources.							
10.	Corrosion Susceptibility of Aluminum to Acid or Base.							
11.	Determination of pH of different food items.							
	Total Marks: 25							
	No Class room Assignments							

* Any TEN of the above.

****Term Work Assessment Scheme**: 1. Performance:15 marks (Carrying out experiment, Readings, Calculations and Results)

2.Knowledge :05 Marks(Theory of the experiment)

3. Journal : 05 Marks

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	M.M. Uppal	Text book of Engg. Chemistry	Khanna Publisher
2	V.P.Mehta	Text book of Engg. Chemistry	Jain Bros. Delhi
3	S.N Narkhede	Textbook of Engg. Chemistry	Niraj Prakashan
5	S S Dara	A Textbook of Engg. Chemistry	S Chand & Co
4	P.C. Jain and M.Jain	Engg. Chemistry.	Dhanpat Rai
			Publishing Co.

(GC105) Basic Engineering Practice (Electronics& Comp.) 1. COURSE OBJECTIVE:

The students will be able to acquire knowledge about safety aspects, firefighting, first-aid and carpentry, fitting, plumbing skills. The students will learn proper ways of using various hand tools, measuring devices in acquiring these skills and will also interpret simple electrical drawings/circuit diagrams.

2. TEACHING AND EXAMINATION SCHEME

Γ	Course]	Period		Total		Exan	nination S	cheme	
	Code & Course Title	Week (In Hours)		Hours	Theory Marks		Practical Marks		Total Marks	
	(GC 106)	L	Т	Р	Н	TH	TM	PR/OR	TW	
	Basic									
	Engineering	0	0	5	80	-	-	50	100	150
	Practice									

3. COURSE OUTCOMES:

PART A

On successful completion of the course, the student will be able to: GC106.CO1. Understand safety procedures to be followed in carpentry, fitting, and plumbing. GC106.CO2. Identify various tools used for carpentry, fitting, and plumbing. GC106.CO3: Demonstrate basic working skills in carpentry, fitting and plumbing.

GC106.CO4: Plan & execute a job/activity using job drawing.

PART B

On successful completion of the course, the student will be able to:

GC106.CO1. List the safety measures to be observed in electrical workshop. GC106.CO2. Identify various electrical tools, fittings used for electrical measurements & troubleshooting.

GC106.CO3: Distinguish between single phase and three phase supply.

GC106.CO4: Plan & execute a job/activity from electrical circuit drawing.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

PART A

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	2	1	1	3	2	2	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-3

PART B

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	3	1	1	2	2	1	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-

M = Marks Hr = Practical Hours	CO = Course Outcomes			
Unit	Μ	Hr	CO	
1 General Safety, Housekeeping, Fire	10	06		
1.1Introduction to General Safety aspec	cts of engineering workshop			CO1
1.2 Meaning and importance of housek	eeping.			
1.3 Fire hazards, fire triangle, types of	fire extinguishers – selection			
and use.				
1.4Basic knowledge of first aid with s	specific inputs on cuts, burns,			
electric shocks, artificial respiration, has	ndling emergencies.			
2 Fitting Workshop Practice	30	18		
2.1 Introduction to the trade.				CO1
2.2 Introduction to various hand To	ols, Measuring and Marking			CO2

Teals outting tools Helding tools Stuiking tools			CO2
Tools, cutting tools, Holding tools, Striking tools			CO3
2.3 Types of files and filing methods.			
2.4 Drill bits and drilling Processes, using portable and pillar drilling			
machine.			
2.5 Operations performed in fitting shop such as measuring, marking,			
chipping, filing, grinding, sawing, drilling			
2.6 Threading using taps and dies.			
3 Carpentry Workshop Practice	20	18	
3.1 Introduction to carpentry			CO1
3.2 Types of wood and its characteristics, forms of wood, defects in			CO2
timber and its identification, wood working hand tools			CO3
3.3 Wood working processes.			
3.4 Different types of joints and their usage.			
3.5 Introduction to wood working machines:			
3.6 Lathe			
3.7 Circular saw			
3.8 Band saw			
3.9 Wood planner			
3.10 Universal wood working machine			
4 Electrical Workshop Practice	30	32	
4.1 Brief introduction to power distribution and Electrical Safety.			CO1
4.2 Use of different hand tools used in electrical trade			CO2
4.3 Collection of details of motors and transformers.			CO3
4.4Introduction to Control Panel and its various sections/components.			CO4
4.5 Making of wire joints.			
4.6Measurement of current, voltage, frequency and Power			
Consumption.			
4.7 Connecting and starting of Induction Motor & Measurement of			
its speed. Changing of Direction of rotation of induction motor.			
4.8 Introduction to commonly used electrical Fittings (Domestic &			
Industrial).			
4.9Wiring of Simple Electric Circuit (Bulb & plug point and			
switches) on wooden board			
4.10 Study, connection & use of Energy Meter			
4.11Testing of components using Series test lamp & Multimeter			
4.12Study of Fuses & practice replacement of Fuse			
4.13 Study & Troubleshooting of Tube Light			
5 Plumbing	10	06	
5.1Plumbing tools, pipe fittings and method of joining pvc pipes.	10	00	CO1
5.2 Use of spirit level and plumb bob.			CO1 CO2
5.2 Use of spint level and plumb bob. 5.3 Minor repairs and replacement of fittings.			
1 1 0			CO3
5.4 Reading of plumbing drawings.			
[Note: Plumbing restricted to domestic plumbing and pvc piping.]			
Total	100	80	
10181	100	00	

The Course will be delivered through workshop practical sessions in mechanical and electrical workshops.

Unit No	Unit	Number of hrs.	Marks
1	General Safety, Housekeeping, Fire Fighting & First Aid	06	10
2	Fitting Workshop Practice	18	30
3	Carpentry Workshop Practice	18	20
4	Electrical Workshop Practice	32	30
5	Plumbing	06	10
	Total	80	100

7. SPECIFICATION TABLE FOR PRACTICALS/ MACRO-LESSON PLAN

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Hrs.
1	General Safety, Housekeeping, Fire Fighting & First Aid	06
а	Demonstration on use of Safety Measures while working in Workshop and use of safety signs.	03
b	Demonstration on use of First Aid and Artificial Respiration procedure ,Training on fire and emergency services (using video presentation /fire and safety expert talk)	03
2	Fitting Workshop Practice	18
а	Identification of various hand Tools, Measuring and Marking Tools, cutting tools, Holding tools, Striking tools	03
b	Identification of various types of files and demonstration on filing methods.	03
c	Identification of various types of Drill bits, taps, dies and Drilling machines such as portable and Pillar Drilling machine.	03
d	Job involving filing, marking, cutting operation on MS Flat.	06
e	Job involving Drilling and Tapping operation on MS flat.	03
3	Carpentry Workshop Practice	18
а	Identification of various types of woods and wood working hand tools	03
b	Identification of various types of Carpentry joints and their usage.	03
c	Introduction to wood working machines such as wood working Lathe, Circular saw ,Band saw, Wood planner, Universal wood working machine	03
d	Job involving marking, measuring, planning, sawing, chiseling, joint preparation and assembly of wooden blocks.	06
e	Preparation of job on wood working lathe.	03
4	Electrical Workshop Practice	32
а	Measurement of Single Phase and Three Phase supply Voltage using multimeter.	02
b	Identification of various hand tools used in electrical trade.	02
с	Measurement of electric circuit parameters using Ammeter, Voltmeter,	04

	Frequency meter, Wattmeter.	
d	Making of Straight and T wire joints.	02
e	Testing of electrical components such as Choke, starter, Fuse, Switch using	02
	Series Test lamp and Multimeter	
f	Starting of induction motor using DOL Starter	02
g	Reversal of direction of rotation of Three phase induction motor	02
h	Identification of commonly used electrical fittings.	02
i	Wiring of simple electrical circuit using bulb and socket.	04
j	Measurement of Energy using Energy Meter.	02
k	Identification of Different types of Fuses and their replacement in circuit.	02
1	Testing of various components and connection of Tube light circuit.	02
m	Collecting Name plate Details of Motors and Transformers and operating	04
	and controlling speed of motor from Control panel.	
5	Plumbing	06
a	Identification of Plumbing tools and pipe fittings, Reading of plumbing	03
	drawings, methods of joining PVC pipes, use of spirit level and plumb bob	
	in piping.	
b	To carry out minor repairs and replacement of fittings.	03

9. LEARNING RESOURCES TEXT BOOKS

	DUUKS		
S.	Author	Title of Books	Publishers
No.			
1	N. Sesha Prakash	Manual of Fire Safety	CBS Publishers and Distributers
2	S.K. Hajara-	Workshop Technology	Media Promoters
	Chaudhary		
3	B.S. Raghuwanshi	Workshop Technology-	Dhanpat Rai and sons, New Delhi
4	R K Jain-	Production Technology	Khanna Publishers, New
			Delhi
5	H. S .Bawa	Workshop Technology	Tata McGraw Hill
			Publishers, New Delhi
6	Kent	Mechanical Engineering	John Wiley and Sons, New
		Hand book	York
7	B.L. Theraja	Fundamentals of	S. Chand – New Delhi
		Electrical Engineering and	
		Electronics	

REFERENCE BOOKS FOR FURTHER STUDY

S. No.	Author		Title of Books	Publishers		
1	CIMI- C	Central	Turner - Trade Theory - Ist and	Wiley Eastern Ltd.		
	Instructional Media		IInd Year	New Delhi		
	Institute Madras					

(GC106) Basic Engineering Practice (Mech & Elect.) 2. COURSE OBJECTIVE:

The students will be able to acquire knowledge about safety aspects, firefighting, first-aid and carpentry, fitting, plumbing skills. The students will learn proper ways of using various hand tools, measuring devices in acquiring these skills and will also interpret simple electrical drawings/circuit diagrams.

2. TEACHING AND EXAMINATION SCHEME

Course	Periods/		Total	Examination Scheme					
Code & Course Title	Week (In Hours)				y Marks Practica		l Marks	Total Marks	
(GC 106)	L	Т	P	H	TH	TM	PR/OR	TW	
Basic									
Engineering	0	0	5	80	-	-	50	75	125
Practice									

3. COURSE OUTCOMES:

PART A

On successful completion of the course, the student will be able to:

GC106.CO1. Understand safety procedures to be followed in carpentry, fitting, and plumbing.

GC106.CO2. Identify various tools used for carpentry, fitting, and plumbing.

GC106.CO3: Demonstrate basic working skills in carpentry, fitting and plumbing.

GC106.CO4: Plan & execute a job/activity using job drawing.

PART B

On successful completion of the course, the student will be able to:

GC106.CO1. List the safety measures to be observed in electrical workshop.

GC106.CO2. Identify various electrical tools, fittings used for electrical measurements & troubleshooting.

GC106.CO3: Distinguish between single phase and three phase supply.

GC106.CO4: Plan & execute a job/activity from electrical circuit drawing.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

PART A

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	2	1	1	3	2	2	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-3

PART B

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	3	2	2	3
CO2	2	1	2	3	2	2	2
CO3	3	1	1	2	2	1	2
CO4	2	1	3	3	2	3	2

Relationship: Low-1 Medium-2 High-

M = Marks Hr = Practical Hours CO = Course Outcomes]	
Unit	Μ	Hr	CO
1 General Safety, Housekeeping, Fire Fighting & First Aid		06	
1.1Introduction to General Safety aspects of engineering workshop			CO1
1.2 Meaning and importance of housekeeping.			
1.3 Fire hazards, fire triangle, types of fire extinguishers – selection			
and use.			
1.4Basic knowledge of first aid with specific inputs on cuts, burns,			
electric shocks, artificial respiration, handling emergencies.			
2 Fitting Workshop Practice		18	
2.7 Introduction to the trade.			CO1
2.8 Introduction to various hand Tools, Measuring and Marking			CO2
Tools, cutting tools, Holding tools, Striking tools			CO3
2.9 Types of files and filing methods.			
2.10 Drill bits and drilling Processes, using portable and pillar			
drilling machine.			
2.11 Operations performed in fitting shop such as measuring,			
marking, chipping, filing, grinding, sawing, drilling			
2.12 Threading using taps and dies.	20	10	
3 Carpentry Workshop Practice	20	18	CO1
3.10 Introduction to carpentry3.11Types of wood and its characteristics, forms of wood, defects in			CO1 CO2
timber and its identification, wood working hand tools			CO2 CO3
3.12 Wood working processes.			005
3.13 Different types of joints and their usage.			
3.14 Introduction to wood working machines:			
a. Lathe			
b. Circular saw			
c. Band saw			
d. Wood planner			
e. Universal wood working machine			
4 Electrical Workshop Practice	30	32	
4.1 Brief introduction to power distribution and Electrical Safety.			CO1
4.2 Use of different hand tools used in electrical trade			CO2
4.3 Collection of details of motors and transformers.			CO3
4.4 Introduction to Control Panel and its various			CO4
sections/components.			
4.5 Making of wire joints.			
4.6Measurement of current, voltage, frequency and Power			
Consumption.			
4.7 Connecting and starting of Induction Motor & Measurement of its aread. Changing of Direction of rotation of induction motor.			
its speed. Changing of Direction of rotation of induction motor.			
4.8 Introduction to commonly used electrical Fittings (Domestic & Industrial)			
Industrial). 4.9Wiring of Simple Electric Circuit (Bulb & plug point and			
4.5 winning of Simple Electric Circuit (Build & plug point and			<u> </u>

Total	80	
[Ivole. I lumbing resincted to domestic plumbing and pvc piping.]		
[Note: Plumbing restricted to domestic plumbing and pvc piping.]		
5.4 Reading of plumbing drawings.		
5.3 Minor repairs and replacement of fittings.		CO3
5.2 Use of spirit level and plumb bob.		CO2
5.1 Plumbing tools, pipe fittings and method of joining pvc pipes.		CO1
5 Plumbing	06	
4.13 Study & Troubleshooting of Tube Light		
4.12Study of Fuses & practice replacement of Fuse		
4.11Testing of components using Series test lamp & Multimeter		
4.10 Study, connection & use of Energy Meter		
switches) on wooden board		

The Course will be delivered through workshop practical sessions in mechanical and electrical workshops. **7. SPECIFICATION TABLE FOR PRACTICALS/ MACRO-LESSON PLAN**

Unit No	Unit	Number of hrs.	Marks
1	General Safety, Housekeeping, Fire Fighting & First Aid		10
2	Fitting Workshop Practice		30
3	Carpentry Workshop Practice		20
4	Electrical Workshop Practice		30
5	Plumbing		10
	Total		100

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Hrs.
1	General Safety, Housekeeping, Fire Fighting & First Aid	06
a	Demonstration on use of Safety Measures while working in Workshop and	03
	use of safety signs.	
b	Demonstration on use of First Aid and Artificial Respiration procedure	03
	,Training on fire and emergency services (using video presentation /fire and	
	safety expert talk)	
2	Fitting Workshop Practice	18
a	Identification of various hand Tools, Measuring and Marking Tools,	03
	cutting tools, Holding tools, Striking tools	
b	Identification of various types of files and demonstration on filing methods.	03
с	Identification of various types of Drill bits, taps, dies and Drilling machines	03
	such as portable and Pillar Drilling machine.	
d	Job involving filing, marking, cutting operation on MS Flat.	06
e	Job involving Drilling and Tapping operation on MS flat.	03
3	Carpentry Workshop Practice	18

a	Identification of various types of woods and wood working hand tools	03
b	Identification of various types of Carpentry joints and their usage.	03
с	Introduction to wood working machines such as wood working Lathe,	03
	Circular saw ,Band saw, Wood planner, Universal wood working machine	
d	Job involving marking, measuring, planning, sawing, chiseling, joint	06
	preparation and assembly of wooden blocks.	
e	Preparation of job on wood working lathe.	03
4	Electrical Workshop Practice	32
a	Measurement of Single Phase and Three Phase supply Voltage using	02
	multimeter.	
b	Identification of various hand tools used in electrical trade.	02
с	Measurement of electric circuit parameters using Ammeter, Voltmeter,	04
	Frequency meter, Wattmeter.	
d	Making of Straight and T wire joints.	02
e	Testing of electrical components such as Choke, starter, Fuse, Switch using	02
	Series Test lamp and Multimeter	
f	Starting of induction motor using DOL Starter	02
g	Reversal of direction of rotation of Three phase induction motor	02
h	Identification of commonly used electrical fittings.	02
i	Wiring of simple electrical circuit using bulb and socket.	04
j	Measurement of Energy using Energy Meter.	02
k	Identification of Different types of Fuses and their replacement in circuit.	02
1	Testing of various components and connection of Tube light circuit.	02
m	Collecting Name plate Details of Motors and Transformers and operating	04
	and controlling speed of motor from Control panel.	
5	Plumbing	06
а	Identification of Plumbing tools and pipe fittings, Reading of plumbing	03
	drawings, methods of joining PVC pipes, use of spirit level and plumb bob	
	in piping.	
b	To carry out minor repairs and replacement of fittings.	03

9. LEARNING RESOURCES TEXT BOOKS

	BOOKS	1	
S.	Author	Title of Books	Publishers
No.			
1	N. Sesha Prakash	Manual of Fire Safety	CBS Publishers and Distributers
2	S.K. Hajara- Chaudhary	Workshop Technology	Media Promoters
3	B.S. Raghuwanshi	Workshop Technology-	Dhanpat Rai and sons, New Delhi
4	R K Jain-	Production Technology	Khanna Publishers, New Delhi
5	H. S .Bawa	Workshop Technology	Tata McGraw Hill Publishers, New Delhi
6	Kent	Mechanical Engineering Hand book	John Wiley and Sons, New York
7	B.L. Theraja	Fundamentals of Electrical Engineering and Electronics	S. Chand – New Delhi

REFERENCE BOOKS FOR FURTHER STUDY

S. No.	Author	Publishers		
1	CIMI- Central	Turner – Trade Theory – Ist and	Wiley Eastern Ltd.	
	Instructional Media	IInd Year	New Delhi	
	Institute Madras			

(GC201) ENGINEERING MATHEMATICS II

1. COURSE OBJECTIVE:

2. The course is aimed at providing mathematical knowledge, developing computational skills and reasoning. It also helps students to think logically and in systematic manner so as to grasp mathematical concepts easily. It helps to build analytical thinking which play an important role in solving real world problems in all scientific discipline.

2. TEACHING AND EXAMINATION SCHEME

Semester	Π									
Course code & Periods/Week			Total	Examination Scheme						
course title		(in ho	ours)		hours	Theory	7	TERN		Total
						Marks		WOR	K	Marks
(GC201) Engineering		L	Т	Р	Н	TH	ТМ	TW	PR/OR	
Mathematic		4	2	-	96	75	25	25	-	125

3.COURSE OUTCOMES:

GC201.CO1: Understand the basic principles of Matrices ,Integration, Determinants and Vectors in engineering problems.

GC201.CO2: Interpret the formulae to solve problems of Matrices ,Integration, Determinants and Vectors.

GC201.CO3: Apply appropriate mathematical methods for solving engineering problems.

GC201.CO4: Analyse the knowledge of Matrices ,Integration, Determinants and Vectors

for various Engineering applications.

4. Mapping Course Outcomes with Program Outcomes

PO 1						
101	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
3	1	1	2	0	2	2
3	1	1	2	0	2	2
2	2	2	3	1	2	2
1	3	2	3	1	2	2
2	2	2 2 2 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Relationship : Low-1 Medium-2 High-3

S. DETAILED COURSE CONTENTS / MICRO-LESSON PLANM = MarksThr = Teaching hoursCO = Course Objectives]	
Unit	Ma rks	Th r	СО
1 .DETERMINANTS AND MATRICES	15	12	CO1,
1.1 Determinants : Definition & order of determinant, value of determinant, properties of determinants(no question), Cramer's rule for solving equations with two & three variables	7	4	CO2, CO4
1.2 Matrices : - Definition & order of matrix, types of matrices, Equality of matrices, addition & subtraction, multiplication of matrices, adjoint & inverse of a matrix , solution of linear equations with two & three variables using matrices	8	8	
2 .INTEGRATION	20	22	CO1, CO2,
Definition, Standard Formulae, properties of Integration for sum, difference and scalar multiplication, integration of algebraic, trigonometric, inverse trigonometric, exponential, logarithmic, composite function, Integration by substitution, integration by partial fraction, integration by parts			CO4
3.DEFINITE INTEGRALS	10	08	CO3
Definition of definite integral and Properties of definite integral ,integration by parts Applications:Area under the curves & lines and area between the curves and Volumes (simple problems)			
4.VECTORS	15	12	C01,
Definition of scalars & vectors, equality of vectors, Addition & subtraction of vectors, triangle, parallelogram laws for addition, position vector, dot product & cross product and their properties and applications, relation between dot and cross product and scalar triple product and applications			CO2, CO4
5 .STATISTICS / COMPLEX NUMBERS	15	10	CO3
Statistics : (ME and Allied courses only) 5.1:Measures of central Tendency -mean, median, mode for ungrouped & grouped data 5.2:Measures of dispersion –Range, mean deviation, standard deviation, variance, coefficient of variation 5.3: Corrected mean and relation between standard deviation and			

mean.			
5.Complex Numbers (electronics and Allied courses only)			CO3
5.1:Definition of complex number and Argand diagram, equality of complex numbers,			
5.2:powers of 'i', complex conjugates,			
5.3:Addition& subtraction of complex nos. Multiplication& division			
of complex nos.			
5.4: Modulus and argument of a complex number			
5.5:Polar form & exponential form of complex no.			
5.6: De Moivre's theorem., nth root of complex nos.			
5.7:Hyperbolic, exponential, circular functions			
Total	75	64	

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY (GC201)

Unit No	Unit	Number of lectures	Marks
1	Determinants & Matrices	12	15
2	Integration	22	20
3	Definite Integrals	08	10
4	Vectors	12	15
5	Statistics /Complex Number	10	15
	Total	64	75

- Tutorial books should be maintained by students (5 marks)
- Two home assignments per semester (5 marks)

The Two assignments each comprises of thirty questions which includes 15 short questions and fifteen long questions. First assignment will cover fifty percent of syllabus

and second assignment will cover remaining portion of syllabus

• Topic-wise class assignment (15 marks)

Class assignment comprises of ten short and ten long questions.

9. LEARNING RESOURCES	
Toxt Doolse /notonon hoolse	

Text Books /reference books								
S. No.	Title of Books	Author	Publishers					
1	MathematicsforPolytechnicStudents(BasicMathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune					
2	Mathematics for Polytechnic Students(Engineering Mathematics)	S.P. Deshpande	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune					
3	Applied Mathematics	S.B. Gore, M.B.Patil, S.P. Pawar	Vrinda Publications					

Reference Books for further study

S. No.	Title of Books	Author	Publishers		
1	Applied	Dr. U.B.Jangam,	Nandu Printers&		
	Mathematics I	K.P. Patil, Nalini	Publishers Pvt. Ltd.		
		Kumthekar	Mumbai		
2	Applied	H.K. Dass	CBS Publishers &		
	Mathematics for		Distributers Pvt. Ltd.		
	Polytechnics		Pune		
3	Advanced	H.K. Dass	S. Chand		
	Engineering				
	mathematics				

(GC 202) APPLIED PHYSICS- II

1. COURSE OBJECTIVE:

On successful completion of the course, Students completing the Applied Physics II course will be able to demonstrate competency and understanding of the basic concepts found in, Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light and Optics and Sound, and will be able to utilize the knowledge to demonstrate competency with experimental methods that are used to discover and verify the concepts related to content knowledge.

~	Into And EXAMINATION SCHEME									
	Semester II									
ſ	Course code &	Per	Periods/Week		Total	Examination Scheme				
	course title	(in hou	ırs)	Hours	The	ory	Pra	octical	Total
						Marks		Marks		Marks
				-						
	(GC202) Applied	L	Τ	Р	Н	TH	TM	TW	PR/OR	
	Physics- II	03	0	02	80	75	25	25	-	125

2.TEACHING AND EXAMINATION SCHEME

3. COURSE OUTCOMES:

GC202.CO1: Understand the Fundamental Concepts of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound.

GC202.CO2: Explain the basic principles of Electrostatics, Current Electricity, Electromagnetism and Electro Magnetic Induction, Light, Optics and sound.

GC202.CO3: Apply the knowledge of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound to specific applications.

GC202.CO4: Compute various parameters in the field of Electrostatics, Current Electricity, Electromagnetism and Electromagnetic Induction, Light, Optics and Sound.

4. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability& Environment	Project Management	Life -long Learning	
CO 1	3	3	1	1	2	0	3	
CO 2	3	3	1	1	2	0	2	
CO 3	3	2	3	3	3	1	1	
CO 4	2	2	2	3	1	1	1	

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)
M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Th	CO
		r	
1 UNIT NAME: ELECTROSTATICS	12	8	CO1,
1.1 Coulomb's law, Electric field,			CO2,
1.2 Electric field Intensity, Electric lines of force and properties			CO3,
1.3 Electric potential, Definition of Absolute potential			CO4
1.4, Potential difference, Potential of sphere,			
1.5 Potential of earth.			
1.6 Capacitance,			
1.7 Capacitors in Parallel Derivation of Expression			
1.8. Capacitor in series Derivation Of Expression			
2. UNIT NAME: CURRENT ELECTRICITY	20	12	CO1, CO2,
2.1 Definition of Electric Current and its Unit, Ohm's Law, Resistance,			CO3,
2.2 Factors on which resistance depends, Specific resistance. Effect of			CO4
temperature on resistance			
Temperature coefficient of resistance,			
2.3 Resistances in Series and parallel			
2.4 EMF and Internal resistance of cell			
2.5 General Equation of ohm's law.			_
2.6. Wheatstone's Network and Principle of Meter Bridge			
2.7 Principle of Potentiometer (V α L) and Applications to compare EMF of			_
given cells by single cell method and sum difference method			
2.8 Determination of Internal resistance of a cell using potentiometer.			_
2.9 Electric Power and Electric Energy, KWh			
2.10 Calculation of Energy bills			
2.11 Heating Effect of Electric current. Joule's law.			
2.12 Applications in house hold appliances			_
3. UNIT NAME: ELECTROMAGNETISM AND EM INDUCTION	16	10	C01,
3.1 Magnetic field, Magnetic flux, and magnetic flux density and	10	10	CO1,
its unit			CO2, CO3,
3.2 Magnetic effect of Current, Oersted's Experiment, Right hand Thumb		+	CO4
Rule, Biot Savart law			
3.3 Magnetic field at the center of the coil (no derivation), Magnetic field		1	1
due to coil (Qualitative discussion only			
3.4 Electromagnet. Force acting on a current carrying conductor placed in			1
magnetic field and expression (no derivation)			
3.5 Fleming's left-hand rule. Electromagnetic Induction. Faraday's		+	-
Experiment			
3.6. Faraday's laws Lenz's law. Self-Induction and Mutual Induction.			-
3.7 Transformer Principle.			-
3.8 Step up and Step-down transformer.			-
3.9 Induction Heating			-
5.7 muucuon meaning	1		

3.10 Induction heater and uses			
4. UNIT NAME: LIGHT AND OPTICS	16	10	C01,
4.1 Frequency Range of Infrared, ultraviolet and visible light and their uses			CO2,
4.2 Reflection, Refraction, Snell's law, refractive index.			CO3,
4.3 Refraction through glass slab and prism.			CO4
4.4 Total Internal reflection applications in optical fibers.			
4.5 Advantages of optical fibers. LASER, sources and applications.			
4.6. Luminous Intensity, Intensity of Illumination			
4.7 Inverse square law of Illumination (No derivation)			
4.8 Principle of Photometry, X rays,			
4.9 Production of X Rays by Coolidge tube			
4.10 Properties and applications			
5. UNIT NAME: SOUND	11	08	CO1,
5.1 Sound as longitudinal wave, wavelength, frequency, time period,			CO2,
amplitude,			CO3,
5.2 Free vibration force vibration, resonance, examples,			CO4
5.3 Echo reverberation ,pitch loudeness,intensity of sound,			
5.4 Ultrasonic waves, Piezo electric effect, Principle of Production of ultra-			
sonics waves			
5.5 Application of Ultra sonics in finding depth of sea,			
5.6. Detection of flaws in metal, soldering, Drilling,			_
5.7 Ultrasonic Cleaning			
5.8Ultrasound for medical purposes.(Just Uses)			

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit No	Unit	Number of lectures	Marks
1	ELECTROSTATICS	8	12
2	CURRENT ELECTRICITY	12	20
3	ELECTROMAGNETISM AND EM INDUCTION	10	16
4	LIGHT AND OPTICS	10	16
5	SOUND	8	11
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS

No	Practicals	Marks
1.	Specific Resistance by Ammeter Voltmeter Method	25
2	Specific Resistance by Meter Bridge Method	25
3	To Verify the Series Law of Resistance by Meter Bridge Method	25
4	To Verify the Parallel Law of Resistance by Meter Bridge	25
	Method	
5	To Compare the emf of two cells by single cell method	25
6	To find the internal resistance of a cell by Potentiometer Method	25
7	To find the velocity of sound by Resonance Tube method	25

8	To find the Refractive index	25
	Total (Average)	25

9. LEARNING RESOURCES Text Books

Text Dooks								
S. No.	Author	Title of Books	Publishers					
1	B G Dhande	Applied Physics of Polytechnics	Pune Vidyarthi Griha					
			Prakashan					
2	Bhandarkar Applied Physics of Polytechnics		Vrinda publication					
3	R K Gaur and S L Engineering Physics		Dhanpat Rai & Sons					
	Gupta		Delhi					
4	Dr. Vasudev R	A Text Book of Applied Physics for	Broadway Publishing					
	Bhagwat	Polytechnics	House					
5	B L Thereja	Engineering Technology	S. Chand					
Reference Books for further study								

S. No.	Author	Title of Books	Publishers
1	Halliday D and	Physics Part I-II	Wiley Eastern Ltd.
	Resnick		
2	Satish k. Gupta	ABC of Physics I&II	Modern Publisher
3	Saxena HC and	Applied Physics Vol I & II	S. Chand Publisher
	Singh Prabhakar		

(GC203) ENVIRONMENTAL STUDIES

1. COURSE OBJECTIVE:

Environment is the nurturing force upon which we depend. It decides our well being, our health & quality of our life. The environment is deteriorating at an alarming rate due to increasing human activity and can be saved only by timely human action. The aim of Environmental studies is to sensitize the students towards the need to conserve & protect natural resources & biological support systems. With the aim to develop an attitude of concern for the environment the students will learn to choose environmentally friendly options for sustainable development and live in harmony with nature.

2. TEACHING AND EXAMINATION SCHEME :

Semester	Ι									
Course cod course tit		-	iods/W n hour		Total Credits	Examination Scheme				
		(-)		Theory	Theory Marks Practical Marks To Ma		Practical Marks	
(GC203)		L	Т	Р	Н	TH	TM	TW	PR/OR	
Environme	ntal									
Studies		04	-	-	64	75	25	-	-	100

3. COURSE OUTCOMES:

GC203.CO1: Understand the role and importance of various elements of Environment.

GC203.CO2: Identify the concerns related to the natural resources, ecosystems, biodiversity, pollution and social issues of environment.

GC203.CO3: Develop sensitivity towards Environmental issues.

GC203.CO4: Co-relate causes affecting the environment & biodiversity.

4. Mapping Course Outcomes with Program Outcomes :

Mapping Course Outcomes with Program Outcomes .								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
	Basic & Discipline Specific	roble naly	Design and Devlopmen t of	Engg. Tools, Experiment	Engg. Practices for Society,Sus tainability	Project Manageme nt	Life -long Learning	
CO1	2	1	1	0	3	2	2	
CO2	2	1	1	0	3	2	2	
CO3	1	1	1	0	3	2	2	
CO4	1	1	2	0	3	2	2	

M = Marks Thr = Teaching hours CO = Course Objectives	M = Marks Thr = Teaching hours CO = Course Objectives					
Unit	Mk	Thr	CO1,			
	S	00	CO3,			
UNIT 1.0 : Multidisciplinary Nature of Environmental Studies	09	08	CO4			
1.1 Environmental studies : Definition , Scope and Importance			_			
1.2 Need for Public Awareness			_			
1.3 Environment & Human Health			_			
1.4 Environmental Ethics			_			
1.5 Value Education			_			
1.6 From Unsustainable to Sustainable Development : Concept and Guidelines						
1.7 Concept of Environmental Audit (EA)			-			
Environment Impact Assessment (EIA)						
1.8 Ecological Foot Prints			1			
UNIT 2.0: ECOSYSTEM AND BIODIVERSITY	15	13	CO1,			
2.1 Ecosystem			CO2, CO3,			
2.1.1Concept, Structure & functions of ecosystem			CO4			
(Function of producer, consumer and decomposer)						
2.1.2 Food chain & Food web- Concept & Examples						
2.1.3 Energy flow in Ecosystem						
2.1.4 Ecological Pyramids (Inverted & Upright)						
Pyramid of Number, Biomass & Energy.						
2.1.5 Ecological Succession (Primary & Secondary Succession)						
2.1.6 Study of Ecosystem: characteristic features structure and functions)						
Terrestrial(Forest, Grassland, Desert) Aquatic(Pond, River & Ocean)						
2.2 Biodiversity			-			
2.2.1 Definition of Biodiversity						
2.2.2. Types of Diversity (Genetic, Species & Ecosystem)						
2.2.3. Value of Biodiversity (Consumptive, Productive, Social, Aesthetic						
Moral & Optional value)						
2.2.4 India as a Mega- diversity Nation						
2.2.5 Biogeographical classification of India						
2.2.6 Extinct, Endangered, Threatened & Endemic Species -Examples (of						
India)						
2.2.7 Threats to Biodiversity (Habitat loss, Poaching of Wild life & Man						
Wildlife Conflict)						
2.2.8 Reasons for loss of Biodiversity						
2.2.9 Conservation of Biodiversity (Insitu & Exsitu conservation)						
UNIT 3.0 : NATURAL RESOURCES	18	15	CO1,			
3.1 Forest Resource			CO2,			
3.1.1 Direct & Indirect value of Forest			CO3,			
3.1.2 Deforestation-causes & effects			CO4			

	1		
3.1.3 Forest Management			
3.2 <u>Water Resource</u>			
3.2.1 Water as a scarce Resourc			
3.2.2Use and over exploitation of surface and ground water			
3.2.3 Need for Water Conservation			
3.2.4 Construction of dams- Benefits and draw backs			
(Rehabilitation & Resettlement of people)			
3.2.5 Rain water Harvesting.			
3.2.6 Watershed Management			
3.2.7 Conflicts over water in India			
3.3 Energy Resource			
3.3.1 Renewable & Non-Renewable sources of Energy			
3.3.2 Growing Energy Needs.			
3.3.3 Alternate Source of Energy (Solar ,Wind, Bio, Geothermal,			
Hydro & Nuclear Energy)			
3.4 Food Resource			
3.4.1 Sources of Food			
3.4.2 World Food Problems (Undernourishment & Malnourishment)			
3.4.3 Changes caused by agriculture & overgrazing			
3.4.5 Effects of modern agriculture on environment			
(use of synthetic fertilizers & synthetic pesticides in agriculture)			
3.5 Mineral Resource			
3.5.1 Types of Minerals			
3.5.2 Use & Overexploitation of Minerals			
3.5.3 Environmental Impact of Mining.			
3.6 Land Resource			
3.6.1 Pattern of Land Utilization (In India and World)			
3.6.2 Land Degradation – Causes & Control Measures			
UNIT 4.0 : ENVIRONMENTAL POLLUTION- Sources, Effects &	24	20	
Control Measures			G 04
4.1 <u>Air Pollution</u>			CO1,
4.1.1 Definition, sources of air pollution(Primary and Secondary air			CO2,
pollutants with examples)			CO3,
4.1.2 Effects on human health, animals, plants & Materials			CO4
4.1.3 Control of Air Pollution.			
4.1.4 Removal of Particulate matter			
4.1.5 Principles & Application of Control Equipments			
(Gravity and Inertial Separators, Cyclones, Filters, Electrostatic			
precipitators, Wet scrubbers)			

4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption,			
Absorption)			
4.1.7 Global Issues Definition, Cause & effects of Green House effect			
& Global Warming. Ozone layer Depletion, Acid Rain.			
4.6 <u>Noise Pollution :-</u>			
4.6.1 Definition.			
4.6.2 Sources of Noise Pollution			
4.6.3 Effects of Noise Pollution on Human health (Noise Induced			
hearing loss, Physiological & Psychological Effects)			
4.6.4 Control of Noise Pollution.			
4.7. Nuclear Pollution / Radioactive Pollution:-			
4.7.1 Definition			
4.7.2. Sources of nuclear Pollution (Natural & Man made)			
4.7.3. Effects of Nuclear Pollution			
4.7.4. Control of Nuclear Pollution			
4.7.5.Disposal of Nuclear waste (Low, Medium & High activity waste)			
4.7.6 Nuclear Accidents & Holocaust – case study			
4.8 Solid Waste Pollution.			
Definition: Refuse, Garbage			
Sources of Solid waste			
Types of solid waste (MSW, HW, BMW & EW)			
Effects of Consumerism			
Segregation of Solid waste at source			
Treatment of MSW (Open dumping, Land filling, incineration &			
composting)			
Waste Utilization (Reuse, Reclaim & Recycle)			
Solid waste Management System – Flow sheet diagram			
4.9 Role of an Individual in Prevention of Pollution.			
UNIT 5.0 : SOCIAL ISSUES & ENVIRONMENT	09	08	CO2,
			CO3,
5.1 Environmental Legislation			CO4
Article 47 & Article 51-A(g)of the constitution on Environment.			
5.1.1 Protection			
Functions of Ministry of Environment and Forest Govt. of India			
Objectives & Functions of Central & state pollution Control			
Boards			
Environmental Protection Act.			
Air (Prevention & Control of Pollution) Act.			
Water (Preventation & Control of Pollution) Act.			
Wildlife Protection Act.			
	1	1	1

Forest Conservation Act.		
Motor vehicle Act.		
5.2 Social Issues		
5.2.1Women & Child Welfare		
5.2.2 Role of IT in Environment & Human Health		
5.2.3 AIDS		
5.2.4 Population Growth & Variation among Nations		
5.2.5 Human Rights		

COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit No	Unit		Number of lectures	Marks
1	MULTI-DISCIPLINARY NATURE ENVIRONMENTAL STUDIES	OF	08	09
2	ECOSYSTEM AND BIODIVERSITY		13	15
3	NATURAL RESOURCES		15	18
4	ENVIRONMENTAL POLLUTION		20	24
5	SOCIAL ISSUES & ENVIRONMENT		08	09
		Total	64	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS 9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Erach Bharucha	Textbook of Environmental Studies	Universities Press
			(India) Private Ltd.
2	Dr. Suresh K.	Environmental studies	S.K. Kataria & Sons
	Dhameja		
3	Y. Anjaneyulu	Introduction to Environmental	B.S Publications
		Science	
4	S. Deswal & A.	A Basic Cource in Environmental	Dhanpat Rai & Co.
	Deswal	Studies	
5	P. Meenakshi	Elements of Environmental Science	Prentice Hall of India
		and Engineering	(PHI)

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Pandya and Camy	Environmental Engineering	Tata McGraw Hill
2	Asthana D.K. and	Environmental Problems and	S. Chand & Co.
	Asthana Meera	Solutions	
3	Gilbert M. Masters	Introduction to Environmental	Prentice Hall of India
		Engineering and Science.	(PHI)
4.	M N Rao & HVN	Air Pollution	Tata McGraw Hill
	Rao		

FIELD ACTIVITIES (OPTIONAL)

- 1. Visit to Selaulim/ Anjunem Dam.
- 2. Visit to show Hill cuttings, mining areas.

3. Visit to show Rain water harvesting project / Vermicomposting plant / watershed management project. (Krishi

Vigyan Kendra – Old Goa)

4. Visit to Garbage treatment plant.

*On Completion of visit Report to be submitted.

(GC204) ENGINEERING DRAWING

1. Course Objective: Drawing is a graphical language of engineering field. Engineering technician irrespective of his/her field of operation in an industry is expected to possess a thorough understanding of drawing, which includes visualization of objects and the proficiency in reading and interpreting a wide variety of engineering drawings. It is the skill, which translates an engineering idea into lines and dimensions. Besides this he/she is also expected to possess a certain degree of drafting skills- depending upon his/her job.

2. TEACHING AND EXAMINATION SCHEME:

Course Code &	Periods/ Week (In Hours)		Total		Exar	nination S	cheme		
Course Title			Course Title Theory Ma		Marks	Practical Marks		Total Marks	
(GC204)	L	Т	Р	Н	ТН	TM	TW	PR/OR	
Engineering Drawing	-	-	5	80	-	-	50	50	100

3. Course Outcomes:

On successful completion of the course the student will be able to:

GC204.CO1: Understand different methods of projection, sectioning of solids and development of surfaces.

GC204.CO2: Select the relevant procedural methods for preparing Engineering Drawing.

GC204.CO3: Draw Isometric views and orthographic projection of full and sectioned objects and development of surfaces

GC204.CO4: Examine and Interpret Engineering Drawings

3. Mapping Course Outcomes with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	Basic and discipline specific knowledge	Problem analysis	Design & developm ent of solution	Engg tools exptn and & testing	Engg Practice for society,susta inability and	Project manage ment	Lifelong learning
					environment		
CO1	3	2	1	3	1	1	1
CO2	3	1	2	3	1	2	2
CO3	2	2	2	3	1	2	2
CO4	2	2	2	2	1	2	3

Relationship-1:Slight (low) 2:Moderate(Medium) 3: Substantial(High)

5. Detailed course Contents/ Micro lesson plan

M=Marks

Prhr= Teaching Hrs

CO=Course Outcomes

Unit	Mark	Prhr	CO
 Introduction 1.1 Importance of engineering drawing as a means of communication. 	05	05	CO2
 1.2 Planning of drawing sheet as per SP 46(latest revision) 1.3 Indian standard practices of laying out and folding of drawing 1.4 Different types of lines used in engineering drawing. 1.5 Importance of coole in Engineering Drawings. 			
 1.5 Importance of scale in Engineering Drawings. 1.6 Lettering 1.7 Methods of dimensioning, Dimensioning terms and notation -use of SP 46(latest revision), General rules for dimensioning, Dimensioning of cylinder, holes, arcs of circle, narrow space, angles, countersunk hole, taper. 			
 2. Geometrical construction & Engineering Curves 2.1Construction of an Equilateral and Isosceles triangle, Square, Regular pentagon & Regular hexagon given length of a side using general method of construction 	05	15	CO2

2.2Construction of Engineering curves like:			
Ellipse- by focus & directrix method and arcs of circles method Parabola- by focus & directrix method and rectangle method			
Hyperbola- Focus and directrix method			
2.3 Cycloid- by generating circle rolling on a straight line			
2.4 Involutes of a circle.			
2.5 Draw normal & tangents to the above curves from given point on the curve			
Curves to be explained with the help of applications.			
3. Orthographic projection	18	30	CO1,
3.1 Definitions of various terms associated with orthographic projections. Planes of projections. Concept of Quadrants.			CO2, CO3, CO4
3.2 First and third angle method of projection.3.3 Projection of points			04
3.4Projection of lines			
Parallel to both Principal planes			
Parallel to one and Perpendicular to other Principal plane.			
Inclined to one plane and parallel to other plane.			
3.5 Projection of planes:Triangle, Square, circle when inclined to one principal plane & perpendicular to other plane.3.6 Projection of solids: Cylinder, cone.			
Right regular solids such as			
 (i) Prism: Square& Pentagonal (ii) Pyramid: Triangular & Square. Projections of above mentioned solids when axis is inclined to one principal plane & Parallel to other principal plane. 			
3.7 Conversion of simple pictorial views into orthographic views.			
Problems where one end of the line is in one quadrant & other end in other quadrant and traces are to be excluded.			

Problems where apparent shape of plane are given, true shape & slope angle are to be drawn are excluded.			
4. Section of solids Development of lateral surfaces	10	15	C01,
4.1 Concept of sectioning planes, Auxiliary planes and true shape of section.			CO3
4.2 Drawing section of solids like square prism, square pyramid, cylinder and cone with sectioning plane inclined to one principal plane and Perpendicular to the other principal plane (Axis of solid perpendicular to one principal plane and parallel to the other)			
4.3Concept and importance of surface development in the engineering field. Methods of development of surfaces-Radial & Parallel line method. Development of surfaces for solids like square prism, square pyramid, cylinder and cone.			
Development of solids standing on its base & cut by a plane inclined to HP and perpendicular to VP is also included.			
5. Isometric Views	12	15	CO3,
5.1Difference between Isometric projection & Isometric view.			CO4
5.2Isometric view of geometrical planes and solids.			
5.3Conversion of orthographic views into isometric views.			
5.4Construction of Isometric view for any real object.			
Total	50	80	

6. Course Delivery:

The course will be delivered through Practicals, class room interaction and exercises.

7. Specification table for Practical/Macro Lesson Plan

Unit No.	Unit	No. Of Practical Hrs.	Marks
1	Introduction	05	05
2	Geometrical construction & Engineering Curves	15	05
3	Orthographic projection	30	18
4	Section of solids Development of lateral surfaces	15	10
5	Isometric Views	15	12
	Total	80	50

8. Specification table for Practical/ Termwork:

No.	Practical
1	TYPES OF LINES, LETTERING, DIMENSIONING.
2	GEOMETRICAL CONSTRUCTIONS
3	ENGINEERING CURVES
4	PROJECTION OF POINTS & LINES
5	PROJECTION OF PLANES
6	PROJECTIONS OF SOLIDS
7	ORTHOGRAPHIC PROJECTIONS (First angle)
8	ORTHOGRAPHIC PROJECTIONS(Third angle)
9	SECTIONS AND DEVELOPMENT OF SOLIDS
10	ISOMETRIC VIEWS

9. Learning Resources:

Text Books

S.No.	Author	Title	Publisher
1	N.D. Bhatt	Engineering Drawing	Charoter Publisher, Anand
2.	R. K. Dhawan	Engineering Drawing	S. Chand Publishing
3.	K.R. Gopalakrishna	Engineering Drawing	Subhas Publications.

Reference Books only for further study

S.No.	Author	Title	Publisher		
1	P.S. Gill	Geometrical Drawing	Kataria & Sons		
2	P.S. Gill	Machine Drawing	Kataria & Sons		
3	N.D. Bhatt	Machine Drawing	Charoter Publisher, Anand		

Indian and International codes needed

S.No.	Author	Title	Publisher		
1.	BIS, India	SP 46. (Latest revision).	BIS, India		

(GC205) ENGINEERING MATERIALS

1. COURSE OBJECTIVE:

This course is introduced with an objective of providing knowledge to students regarding properties and composition of materials for engineering applications and enabling them to make comparative study of materials while selecting the appropriate material for various engineering applications.

2. TEACHING AND EXAMINATION SCHEME

Semester	II											
Course code &		Pe	riods/	Week	Total		Exan	ninatior	n Scheme			
course title		(in ho	urs)	Hours	Theory		Practical		Total		
						Marks		Marks Marks Ma		Marks		Marks
				_								
(GC20	5)	L	Τ	P	H	TH	TM	TW	PR/OR			
ENGINEE	RING	3			48	75	25			100		
MATERI	ALS											

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

GC205.CO1: List out the properties of materials used in engineering applications.

GC205.CO2: Explain the composition and properties of various engineering materials.

GC205.CO3: Classify materials based on composition and properties.

GC205.CO4: Select the appropriate material/s for the given engineering application/s.

4. Mapping Course Outcomes with Program Outcomes

- Hupping Course Outcomes with Frogram Outcomes												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7					
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability & Environment	Project Management	Life -long Learning					
CO1	3	2	0	0	0	0	1					
CO2	3	2	1	0	0	0	1					
CO3	2	2	2	1	1	0	1					
CO4	2	3	3	2	1	0	1					

Relationship : Low-1 Medium-2 High-3

M = Marks	Thr = Teaching hours	CO = Course Objectives			
	Unit		Μ	Thr	СО
1 INTRODUC	08	04			
1.1 Classificatio	1.1 Classification of Materials: Metal and Non-metal, Ferrous Metal & Non-				
ferrous Metals, Differences between Metals & Non-metals					CO2,
1.2 Properties of	of Materials:(Note: Proper	ties to be explained with relevant			СОЗ,

		1	
examples.)			CO4
1.2.1 Physical properties – Melting point, Freezing point, Boiling point,			
Density, Linear co-efficient of expansion, Thermal conductivity, Electrical			
resistivity			
1.2.2 Mechanical properties – Strength, Elasticity, Plasticity, Ductility,			
Malleability, Toughness, Brittleness, Hardness, Fatigue, Creep.			
1.2.3 Electrical properties – Resistivity, Conductivity, Temperature coefficient			
of resistance, Dielectric strength, Thermo-electricity, Super conductivity			
1.2.4 Magnetic properties – Permeability and Coercive force			
1.2.5 Chemical properties - Corrosion resistance and Chemical composition			
2 FERROUS & NON-FERROUS METALS & ITS ALLOYS	18	12	
2.1 FERROUS ALLOYS:			CO1,
1.1.1 Low carbon steel, Medium carbon steel, High carbon steel, their carbon percentage, properties & uses.			CO2, CO3,
1.1.2 Cast iron: grey cast iron, white cast iron, their properties & uses			CO3, CO4
1.1.3 Alloy steels: Constituents of alloy steels such as Phosphorous,			001
Sulphur, Silicon, Manganese and their effect on properties of			
materials.			
1.1.4 Stainless steel, Nickel-chromium-molybdenum steel, its properties			
& uses. 1.1.5 Tool steel – composition, HSS, properties & uses			
2.2 NON-FERROUS METALS & ALLOYS:			CO1,
2.2.1 Aluminium – Properties & uses			CO1, CO2,
2.2.2 Aluminium alloys – constituents of alloy & their effect on properties of			CO2, CO3,
metal			CO3,
2.2.3 Properties & uses of Duralumin, Y-alloy and Al-Si alloy			04
2.2.4 Copper – Properties & uses.			
2.2.5 Copper alloys – Constituents of alloy & their effect on properties of			
metal			
2.2.6 Properties & uses of Copper – Zinc alloys such as Muntz metal,			
manganese, bronze, Copper-Tin alloys such as Bronze, Copper-Aluminium			
alloys such as Aluminium bronzes.			
2.2.7 Lead and its hazard to the environment			
3 NON-METALLIC MATERIALS	18	10	
3.1 CONSTRUCTION MATERIALS			CO1,
3.1.1 Classification of rocks, common building stones and their applications.			CO2,
3.1.2 Cement: Types of cement, composition and applications			CO3,
3.1.3 Bricks: Composition, properties, Classification, Special bricks-			CO4
Refractory and fly-ash bricks and uses			
3.1.4 Clay: Types, products of clay- tiles and pipes			
3.1.5 Sand- sources – river, crushed aggregates, applications			
3.2 ENGINEERING CERAMICS			
3.2.1 Refractories: Desirable properties, Properties and Applications of Fire			CO1,
clay and Silica Refractory, Difference between acid, basic & neutral			CO2,
refractories			CO3,
3.2.2 Glass: Properties & uses of soda glass, borosilicate glass and fibre glass			CO4
	1		

	1		
3.2.3 Glass wool: Composition, properties & uses			
3.2.4 Timber: Common varieties of timber, uses of wood products, veneer and			
plywood			
3.2.5 Natural & Synthetic abrasive materials: Introduction, Properties & uses			
4 CONDUCTOR, SEMI -CONDUCTOR, AND INSULATING	16	12	CO1,
MATERIALS			CO2,
4.1 Classification of Materials as Conductor, Semiconductor and Insulating			CO3,
materials			CO4
4.2 Conductor Material:			
4.2.1 High conductivity materials: Copper, Aluminium, Carbon, Silver, Lead			
& Tungsten, their properties as conducting materials and applications.			
4.2.2 High resistivity materials: nichrome, constantan, manganin and their			
applications			
4.3 Insulating Materials: Introduction and Characteristics of Good Insulating			
materials			
4.3.1 Solid Insulating materials- wood, paper, rubber, mica, glass fibre,			
porcelain, PVC, resins, their characteristics as insulating materials and			
applications			
4.4 Semiconductor Materials: Silicon & Germanium, their specifications as			
semiconductor material and uses.			
Unit 5 MAGNETIC & COMPOSITE MATERIALS	15	10	
5.1 Magnetic Materials: Classification as Diamagnetic, Paramagnetic,			CO1,
Ferromagnetic, List of these materials and their applications			CO2,
5.2 Composite Materials: metal matrix, ceramic matrix and polymer matrix			CO3,
composites, types of reinforcement materials and their applications			CO4
5.3 Paints & Lubricants:			
5.3.1 Classification: oil based and polymer based paints			
5.3.2 Constituents of Paints – resin, binder, pigment, additives, solvents			
5.3.3 Lubricants – Functions of lubricants, Types of Lubricants, Composition			
and Applications			
Total	75	48	

6. COURSE DELIVERY: The Course will be delivered through lectures and class room interactions 7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit Name	Numberoflectures (hrs)	Marks
1	Introduction to Engineering Materials	04	08
2	Ferrous & Non-Ferrous Metals & its alloys	12	18
3	Non-Metallic Materials	10	18
4	Conductor, Semi-Conductor, & Insulating Materials	12	16
5	Magnetic & Composite Materials	10	15
		48	75

8. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers	
1	R.S. Khurmi	Material Science	S. Chand	
2	R. Srinivasan Engineering Materials & Metallurgy		Tata McGraw Hill	
3	TTTI Madras Electrical Engineering Materials		McGraw Hill Education, 2004	
4	S. K. Hajra Choudhury	Material Science and Processes	Indian book distribution	
5	P. C. Varghese	Building Materials	PHI	
6		Electrical and Electronic	Katson	
	J. B. Gupta	Engineering Materials		

SEMESTER III

	DI	PLOMA IN ELECTRON CUI					JNICA' CTURI		ENGIN	EERIN	G -
	Code	Subjects	L	Τ	Р	Η	TH	TM	PR	TW	ТОТ
	CC304 Basic Electrica Engineering		3	0	2	5	75	25	-	25	125
THIRD	EX302	Programming in C			4	4	-	-	50	25	75
	CC308	Basic Electronics Engineering	3	0	2	5	75	25	25	25	150
	CC309	Digital Electronics	3	0	2	5	75	25	25	25	150
	EX301	Communication Engg	3	0	2	5	75	25	-	25	125
	CC303	Circuits & Networks	3	0	2	5	75	25	-	25	125
			15	0	14	29	375	125	100	150	750

(CC304) BASIC ELECTRICAL ENGINEERING

1. COURSE OBJECTIVES:

This course will enable the students to understand the basic concepts and principles of AC Circuits, Transformers and Motors.

- 1. To understand basic concepts in Electrical Engineering
- 2. To understand working & use of Transformer, DC & AC motors
- 3. To understand importance of safety precautions and use of protective devices

2. TEACHING AND EXAMINATION SCHEME

Semester	III									
Course code &		Periods/Week			Total		Exan	nination	Scheme	
course title		(in hours)			Hours	Theory Marks		Practi	cal Marks	Total
										Marks
(Course Co	ode)	L	Τ	Р	H	TH	TM	TW	PR/OR	
BASIC		3	-	2	5	75	25	25		125
ELECTRIC	AL									
ENGINEER	ING									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain terms related to ac waveform, operating principle and functions of parts of transformer, motors, need for earthing and operation of protective devices
- 2. Describe the procedure for starting and speed control of different motors
- 3. Differentiate between types of motors, types of earthing, protective devices, star and delta connection
- 4. Test & Compute parameters of transformers

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	3	2	0	0	0	0	1
CO2	3	2	0	3	0	3	1
CO3	2	2	3	3	2	3	1
CO4	2	2	0	0	2	0	1

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	2
CO2	2	2
CO3	2	2
CO4	2	2

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	М	Thr	CO
1 AC CIRCUITS	15	9	CO1,3
1.1 Sinusoidal AC voltage waveform. Definition and numerical Values of, average value, RMS value, form factor, peak factor, frequency of Sinusoidal quantities. Principle of single phase alternator			
1.2 Three-phase circuits. Concept of phase sequence, balanced system and unbalanced system Relation between line and phase quantities for star and delta connections.			
1.3 Concept & definition of Real, reactive and apparent power in three-phase system.			
2 TRANSFORMER	15	10	CO1,4
2.1 Principle of operation and basic construction (Core & Shell type) of a single phase transformer. EMF equation, Calculations of Rated Currents & Voltages & Turns using emf equation			
2.2 Losses in transformer (Hysteresis, Eddy Current & copper loss, their brief description), efficiency and voltage regulation. Rating of transformer ,Applications of transformer			
3 DC MOTORS	15	10	CO 1,2,3
3.1 Working principle of DC motors, main parts of DC motor and their functions(Yoke ,pole core ,pole shoe, armature core, armature winding ,Commutator& Brushes), classification of DC motors (shunt, series and compound and their applications).			
3.2 Necessity of starter, methods of reversal of direction of rotation of DC shunt and series motor.			
3.3 Speed Equation , Armature resistance control & Field resistance control method for DC shunt Motor			

4 AC MOTORS	15	10	CO1,2,3
4.1Principleof three phase induction motor, main parts, classification (squirrel cage			
& Slip ring), torque-slip characteristics and application (only diagram).			
4.2 Necessity of starter, Starters - Direct On Line starter, star delta starter(Manual)			
and autotransformer starter(Maual), (w.r.t. circuit diagram, working and			
application). Method of reversal of direction of rotation.			
4.3 Working principle and application of			
 Single phase induction motor (split phase only) 			
- Universal motor			
-Stepper motor (Variable reluctance type & permanent Magnet type.)			
5 EARTHING & PROTECTIVE DEVICES	15	09	CO1,3
5.1 Electric shock, precautions against shock.			
Necessity of earthing, types of earthing- equipment earthing& system earthing			
(definitions only).Types of earthing electrodes- Pipe and Plate.			
Methods of reducing earth resistance.			
5.2 Fuse- Definition, Types of Fuses- Rewirable fuse, HRC fuse & Cartridge fuse.			
Rating for fuse such as Voltage ratings, Current ratings, Breaking capacity			
(Rupture capacity) & Minimum fusing current.			
MCB- Principle of operation and application.			
ELCB- Current operated type. Principle of operation and application.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit No	Unit		Number of lectures	Marks
1	AC CIRCUITS		09	15
2	TRANSFORMER		10	15
3	DC MOTORS		10	15
4	AC MOTORS		10	15
5	EARTHING & PROTECTIVE DEVICES		09	15
		Total	64	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Minimum 8)	Marks
1.	Connection of single transformer & Measure its Voltages, Currents, Voltage Regulation & Efficiency	
2.	Verify relationship between phase & line quantities in star connected load	
3.	Speed control of DC motor	

Directorate of Technical Education, Goa State

4.	Starting of DC shunt motor and reversal of direction of rotation	
5.	Starting of three phase induction motor using star delta starter	
6.	Verify relationship between phase & line quantities in Delta connected load	
7.	Study of MCB & ELCB (Current Operated)	
8.	Study of stepper motors	
9.	Study of servo motors	
10.	Study of universal motors	
11.	Study of rotor resistance starter for starting of Slip ring induction	
	motor.	
12.	Checking of Ceiling fan using series test lamp	
13.	Measurement of voltages in a single phase system(between phase and neutral,	
	phase and earth and neutral and earth)	
	Total	25
No	Class room Assignments	Marks
1	At least 2 Assignments	
2		
No	Tutorial Exercise	Marks
1	NIL	
2		
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	B.L.Theraja	Electrical Technology (Vol I and Vol II)	S. Chand
2	V.K Mehta	Principles of Electrical Engineering & Electronics	S. Chand
3	J.B.Gupta	Fundamentals of Electrical Engineering	S.K. Kataria& sons

(EX302) PROGRAMMING IN C

1. COURSE OBJECTIVES:

The course is designed to provide students with programming skills through C language. The course aims to develop student's logical skills to write C program and to compile, debug and execute them on various platforms.

2. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Per	iods/V	Veek	Total	Examination Scheme				
course title	(i	n hou	rs)	Hours	The	ory	Pra	Total	
					Marks		Marks		Marks
(EX302)	L	Т	Р	H	TH	TM	TW	PR/OR	
Programming in	-	-	4	4	-	-	25	50	75
С									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the program statement and draw flow chart.
- 2. Develop basic programming skills and write programs using C.
- 3. Analyze C programs.
- 4. Execute C programs on various platforms.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability& Environment	Project Management	Life -long Learning
CO1	0	2	1	0	0	3	0
CO2	3	3	1	2	2	3	0
CO3	3	3	1	2	3	3	2
CO4	0	1	0	2	0	3	0

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	1
CO2	2	2
CO3	1	3
CO4	1	2

M = Marks Thr = Teaching hours CO = Course Objectives]	
Unit	Μ	Р	CO
1 Introduction to C	12	10	co1
1.1 Overview of C: Brief history of C language, Features of C language ,Application of C language in electronics, Structure of C language			
1.2 Flow chart: Definition and uses, symbol used in flow chart- flow line, terminal, input/output, processing, decision, on-page connector, off-page connector, predefined process/function, Simple examples of flow chart.			
2 Basic elements of C programming	18	14	co2, co4
2.1 Lexical elements of C:C character set, Variables, Constants, Data types, delimiters, reserved words			
2.2 Operators and Expressions in C: Arithmetic operators, expressions, relational operators, logical operators, increment/decrement operators, bitwise data operators,			
2.3C pre-processor: File inclusion (usage only)			
2.4Input/Output in C Different types of input functions and output functions, conversion specification, formatted input/output function			
3 Control statements of C programming	18	14	co2,co4
3.1 Decision control statements :			
if else, nested if			
3.2 Loops: for loop, break and continue statement, nested for loop, while loop, do- while loop			
3.3Case control statement: switch-case-default			
3.4 Functions: Call by value, call by reference, recursive function			
4 Data types	21	18	co3,co4
4.1 Arrays: Declaration of Arrays, one dimensional Array , two dimensional Array			
4.2 Strings: Declaration of String, string library functions			
4.3 Pointers: Declaration of Pointers, pointer operators, Basic pointer arithmetic			
5 Structures	06	08	co3,co4
5.1 Declaration of structure, array of structure, structure within a structure.			
Total	75	64	

6. COURSE DELIVERY: The Course will be delivered through practicals, laboratory interactions, exercises and case studies

Unit Unit Number Marks No of **Practicals** 1 Introduction to C 10 12 Basic elements of C programming 2 14 18 3 Control statements of C programming 14 18 4 Data types 18 21 5 Structures 08 06 64 75 Total

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS(any 8 to 10)

No	Practical	Marks
1.	Program on flow chart	
2.	program on input and output	
3.	program on calculations using operators and expressions	
4.	program on controls statements-if, switch	
5.	Program on loop	
6.	program on function	
7.	program on pointers	
8.	program on arrays	
9.	Program on strings	
10.	program on structures	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignments	
No	Tutorial Exercise	Marks
1		
1	NIL	
•••	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	YeshwantKanetkar	Let Us C	Jones and Bartlett
			publishera, USA
2	J. Jayasri	The 'C' Language Trainer with C	New Age
		Graphics and C++	International (P)
			LTD.
3	Anil Bikas	The Art of Programming Through	FIREWALL
	Chaudhuri	Flowcharts & Algorithms	MEDIA, New Delhi
4	Luciano Mandli	Understanding Algorithm and Flow	Create Space
		Chart	Independent Pub

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	B. W. Kernigham,	The C programming language	
	D. M. Ritchie		
2	Byron gottfried	Programming with c- Schaum's	Tata McGraw Hill
		outlines	
3			

(CC308) BASIC ELECTRONICS ENGINEERING

1. COURSE OBJECTIVES:

The course is designed to introduce students to semiconductor devices and their applications. The course aims to encourage students to Build and test electronic circuits based on semiconductor devices.

2. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Per	Periods/Week		Total	Examination Scheme				
course title	(in hours)		Hours	Theory		Practical		Total	
				Marks		Marks		Marks	
CS308	L	Т	Р	Η	TH	TM	TW	PR/OR	
Basic Electronics	3	-	2	5	75	25	25	25	150
Engineering									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the operation and characteristics of semiconductor devices
- 2. Apply the knowledge of semiconductor devices to build electronic circuits
- 3. Analyze semiconductor device based electronic circuits
- 4. Select an appropriate semiconductor device based circuit for a specific application

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime ntatn&	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	3	1	1	3	2	0	2
CO2	3	2	1	3	2	2	0
CO3	3	3	2	2	3	0	2
CO4	2	2	2	1	3	0	2

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	1
CO2	3	2
CO3	3	3
CO4	3	2

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	CO
1 Introduction to Semiconductors	10		CO1
1.1 Classification of solids as conductors , semiconductors and insulators	10	1	
1.2 Types of semiconductors-Intrinsic and Extrinsic semiconductors,		4	
structure of intrinsic semiconductor			
Extrinsic semiconductor- definition of doping, pentavalent and trivalent			
impurity. P-type and N-type, structure, majority and minority carriers			
2 Semiconductor diode	18		CO1,CO2
			CO3,CO4
2.1 P-N junction and depletion region. forward bias, reverse bias, V-I		4	
characteristics, Important diode ratings			
2.2 Rectifiers- Half wave rectifier, Centre tap Full wave rectifier, Full		4	
wave bridge rectifier, (working, input, output waveforms, Vdc, PIV),			
comparison between rectifiers			
2.3 Filters- definition of ripple factor, Types of filters, C filter		2	
operation(ripple factor, waveforms), numerical on c filter			
3 Zener Diode	12		CO1,CO2
			CO3,CO4
3.1 Construction, operation, forward and reverse characteristics,		4	
breakdown mechanism, Important zener diode ratings, comparison with			
semiconductor diode			
3.2 Zener diode as voltage regulator, numerical on variable supply and		3	
variable load.			
4 Bipolar Junction Transistor	20		CO1,CO2
			,CO3
4.1 Schematic of NPN and PNP transistor, working of NPN transistor.		2	
4.2 Transistor configurations-CE, CB and CC configurations		2	
4.3 Transistor input and output characteristics in CB configuration,		6	
Transistor input and output characteristics in CE configuration ,Alpha,			
Beta and the relation between them			
4.4 leakage currents- concept of ICBO, ICEO, numerical on leakage		2	
currents			
4.5 Comparison between transistor configurations		1	
4.6 Transistor as a switch		1	
5 Field Effect Transistors	15		CO1
5.1 JFET: Structure, operation, characteristics of n and p- channel JFET,		3	
5.2 important JFET parameters (rd, μ and gm, no derivations), comparison		2	
with BJT			
5.3 MOSFET: Structure, operation and characteristics of n-channel and p-		3	
channel enhancement type MOSFET.			
5.4 Structure, operation and characteristics of n -channel and p- channel		3	
depletion type MOSFET			
5.5 Comparison between JFET and MOSFET		1	
Total	75	48	-

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Numberof	Marks
No		lectures	
1	Introduction to Semiconductors	5	10
2	Semiconductor diode	10	18
3	Zener Diode	7	12
4	Bipolar Junction Transistor	14	20
5	Field Effect Transistors	12	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Practical Title	
1.	Plot VI characteristics of semiconductor diode	
2	Plot VI characteristics of zener diode	
3	Assemble and test zener diode as a voltage regulator	
4	Assemble and test half wave rectifier with and without capacitor filter	
5	Assemble and test bridge full wave rectifier with and without capacitor	
	filter	
6	Plot input characteristics of transistor in CB configuration	
7	Plot output characteristics of transistor in CB configuration	
8	Plot input characteristics of transistor in CE configuration	
9	Plot output characteristics of transistor in CE configuration	
10	Assemble and test circuit of transistor as a switch	
11	Plot VI characteristics of JFET	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignments	
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Bhargava & others	Basic Electronics and Linear	Tata McGraw Hill
		circuits	
2	Robert L. Boylestad	Electronic Devices and Circuit	Prentice – Hall India
		Theory	
3	V.K. Mehta	Principles of Electronics	S. Chand
		Engineering	

(CC309) DIGITAL ELECTRONICS

1. COURSE OBJECTIVES:

The students need to learn basic concepts of digital circuits and system which leads to design of complex digital system such as microprocessors.

The students need to know combinational and sequential circuits using digital logic fundamentals. This is the first course by which students get exposure to digital electronics world.

The students will able to

- 1. To understand various number representations and conversion between different representation in digital electronic circuits.
- 2. To introduce the students to various logic gates, SOP, POS and their minimization techniques.
- 3. To analyze logic processes and implementation of logical operations using combinational logic circuits.
- 4. To understand, analyze and design sequential circuits

2. I LACHING AND EAAIMINATION SCHEME										
Semester										
Course code &		Periods/Week		Total	Examination Scheme		Scheme			
course title		(in hours)		Hours	Theory	Marks	Practi	cal Marks	Total	
										Marks
Digital Electr	onics	L	Т	Р	Н	TH	ТМ	TW	PR/OR	
CC309		03	-	02	05	75	25	25	25	150

2. TEACHING AND EXAMINATION SCHEME

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CO1: Relate the knowledge of Number Systems in Digital Applications.

CO2: Build different Sequential and Combinational Circuits.

CO3: Simplify logical problems using digital circuits.

CO4: Develop basic digitalelectronics circuits.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	3	2	3	3	0	0	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	0	3
CO4	3	3	3	3	2	2	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

M = Thr = Teaching CO = Course Objectives		7	
Marks hours			
Unit	Μ	Thr	CO
1 Number System	14	09	CO1
1.1 Digital and Analog Signals.			
Definition of digital and analog signals, Comparison between Analog and			
Digital signals			
1.2 Number System:- Decimal, Binary, Hexadecimal.			
Introduction to Decimal, Binary and Hexadecimal Number Systems. Counting in			
each system. Conversion from one system to other.			
1.3 Codes:- introduction and importance of Codes.BCD code, GRAY code			
conversion of Gray to Binary, Binary to Gray, BCD to binary and Binary to			
BCD. Represent Decimal Numbers in BCD and Gray codes. ASCII code and			
its importance.			
1.4 Binary Addition (upto 4 bits), 1's complement of a Binary number, 2's			
complement of a Binary number. Binary Subtraction using 2's complement			
method. Addition of signed decimal numbers.			
2. Combinational Circuits	19	12	CO1,
2.1 Logic Gates:-			CO2,
Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and			CO3
Combinational gates(NOR,NAND,EXOR,EXNOR).			
2.2 Boolean Algebra:-			
DeMorgan's Theorems, Laws of Boolean Algebra ,Duality Theorem			
2.3Simplification of Boolean Expressions using Boolean Algebraic laws and			
by using K-Maps Techniques(upto 4 Variables in SOP Form),			
2.4 Universal Gates:-			
Implementation of NOT,OR,AND,EXOR gates using NOR and NAND gates			
2.5Adders:- Half Adder circuit using logic gates, Full Adder circuit using			
logic gates, block diagram of 4 bit parallel adder.			
Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using			
logic gates			
2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplevers(4 to 1)			
Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4) Encoder (4 to 2) Deceder(2 to 4) BCD to 7 segment			
Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode).			
3 Flip Flops	12	08	CO1,
	14	VO	CO1, CO2
3.1 Definition of FlipFlop. Applications.			002

Symbol, Truth Tables, Operation and timing diagrams of RS F/F usin NAND gates.	ıg		
3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/	F		
using NAND Gates, Concept of Asynchronous inputs(Preset and Clear)	_		
3.3 Symbol, Truth Tables, Operation of Clocked D F/F			
3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of	of		-
JK flip flop	51		
3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of J.	К		-
master slave F/F.			
3.6 Symbol, Truth Tables, Operation of T F/F,			
4 Registers And Counters	19	12	CO1,
4.1 Registers: Definition of Shift Registers, Applications of Registers			CO2,
Symbols and Logic block diagram of SISO,SIPO,PISO and PIPO Registers,			CO4
4.2 Serial IN Serial Out Register (size of the register 4 bits)			
Logic Diagram and Operation of SISO Register usingnegative edge triggere	ed		
D F/F along with the Truth Table and Timing diagrams	,u		
4.3 Serial IN Parallel Out Register (size of the register 4 bits)			-
Logic Diagram and Operation of SIPO Register using negative edge triggere	ed		
D F/F along with the Truth Table and Timing diagrams.			
4.4 Parallel IN Serial Out Register (size of the register 4 bits)			-
Logic Diagram and Operation of PISO Register using negative edge triggere	ed		
D F/F along with the Truth Table and Timing diagrams			
4.5 Parallel In Parallel Out Register (size of the register 4 bits)			-
Logic Diagram and Operation of PISO Register using negative edge triggere	ed		
D F/F along with the Truth Table and Timing diagrams . Concept of Shi			
right, Shift left, Ring Counter.			
4.6 Counters: Introduction to counters, Modulus of counters. Count sequence	e.		
No of Flip Flops required for Specified counters	- 7		
4.7 Asynchronous Counters:- 4 bit UP counter using JK Flip Flops only and	4		-
bit DOWN counter using JK Flip Flops only.			
4.8 Synchronous Counters:- 4 bit UP counter using JK Flip Flops only and	4		
bit DOWN counter using JK Flip Flops only, Decade (Mod 10) using JK Flip			
Flops only	-		
4.9 Design of Synchronous counters(upto 4 bit) using only JK Flip Flops			
5 DAC and ADC and Memories	11	7	CO1,
5.1 Definitions, Types of DAC and ADC(noDescription), Applications		1	CO4
5.2 Binary Ladder Network for DAC:- Logic circuit and operation. Simpl	le	4	
numerical problems			
Successive Approximation ADC .:- Logic circuit and operation. Simpl	le		
numerical problems.			
5.3Memories: Introduction, Semiconductor memories and its types	-	2	1
ROM,RAM,PROM, EPROM,EEPROM(only definition and applications)			
	75	48	
Tot	al		

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

UnitNo	Unit	Number of lectures	Marks
1	Number System	09	14
2	Combinational Circuits	12	19
3	Flip Flops	08	12
4	Registers And Counters	12	19
5	DAC and ADC	07	11
	Total	48	75

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Perform any 8)	Marks
1.	Verification of Logic gates and Demorgan's Theorems	
2.	Universal gates (NAND and NOR)	
3.	Verification of Boolean Expression	
4.	Half Adder and Full Adder using logic gates	
5.	Half Subtractor and Full Subtractor using logic gates	
6.	MUX and D-MUX	
7.	RS F/F, D F/F and JK F/F	
8.	Assemble and Test Binary Counter/Decade counter	
9.	Assemble and test DAC using DAC0808	
10.	Assemble and test ADC using ADC0808	
	Total	25
No	Class room Assignments	
	At least 2 assignments	

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers	
1	R.P.Jain,	Modern Digital Electronics	Fourth Edition, Tata	
			McGraw-Hill Education.	
2	Malvino & Leach	Digital Principles and Applications	Seventh Edition,	
			McGraw-Hill Education	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Thomas L. Floyd,	Digital Fundamentals	10th Edition, Pearson
			Education Inc, 2011
2	. By A.K. Maini,	Digital Electronics: Principles and	Wiley India
	, , , , , , , , , , , , , , , , , , ,	Integrated Circuits	Publications
1. COURSE OBJECTIVES:

(EX301) Communication Engineering

The course is designed to introduce students to the basics of communication systems and to impart in depth knowledge about of AM& FM. The course aims to develop among student understanding AM/ FM transmitter and receiverand concept of radio wave propagation.

2. TEACHING AND EXAMINATION SCHEME

Semester	III									
Course code	e &	Peri	ods/V	Veek	Total	Examination Scheme				
course titl	le	(iı	n hou	rs)	Hours	Theory Practical		Total		
						Ma	Aarks Ma		larks	Marks
Communica	tion	L	Т	P	H	TH	TM	TW	PR/OR	
Engineerii	ng	03	-	02	05	75	25	25	-	125
EX301										

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Describe different modulation and demodulation techniques used in communication systems.
- 2. Classify types of noise ,frequency bands, modulation techniques, Antennas & wave propagation techniques associated with communication systems
- 3. Apply the concept of modulation and demodulation in AM and FM transmitters and receivers.
- 4. Analyze various Analog Communication techniques.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime ntatn&	Engg. Practices for Society,Su stainabilit y &	Project Managem ent	Life -long Learning
CO1	3	2	1	1	0	1	2
CO2	3	0	2	0	0	2	2
CO3	3	2	2	2	1	2	3
CO4	2	0	2	0	1	0	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Th r	CO
1 Basics of communication Engg	12	07	CO1 & CO2
1.1 Block diagram of communication system			
1.2 Frequency bands used in communication system			
1.3 Noise : Definition & Classification of noise			
• External Noise: Atmospheric noise, Industrial Noise & Extraterrestrial noise			
 Internal Noise: Thermal Noise, Shot Noise & Transit time Noise 			
Definition of signal to noise ratio & noise figure.			
1.4 Need for modulation & types of modulation			
• Analog Modulation techniques: AM, FM, PM Definitions,			
• Pulse Modulation techniques: Definition & waveforms of PAM, PWM &			
 PPM. Digital Modulation techniques :Definition & waveforms of ASK,FSK & PSK 			
2 Amplitude Modulation	21	14	CO1&
	21		CO1
2.1 Amplitude Modulation: Waveforms, Derivation of mathematical			002
expression of AM signal.			
2.2 Derivation of Modulation Index equation using AM waveform, Frequency Spectrum of AM, Power and current relations, Simple numericals			
2.3 Block diagram of AM Transmitter-Low level and high level			
2.4 Detection of AM Waves. Envelope detector			
2.5 Single sideband AM :			
• Advantages of SSB			
• Suppression of carrier using Balanced modulator(no derivation)			
• Suppression of unwanted sideband using filter method			
Block diagram and operation of ISB			
3 Angle Modulation	18	12	CO1&
			CO3
3.1 Angle Modulation : Definition & types of Angle Modulation			
3.2 Frequency Modulation :			
• Waveforms, Mathematical expression of FM (no derivation)			
Modulation index & maximum frequency deviation			
• Frequency spectrum of FM using expanded form of FM equation and			
important observations			
Bandwidth of FM wave ,Carson's rule			
3.3 Narrow band & Wide band FM ,Pre-emphasis and De-emphasis			
3.4 Generation of FM using varactor diode modulator, Detection of FM			
wave using Balanced slope detector			

Directorate of Technical Education, Goa State

3.5 Phase Modulation : Definition and mathematical expression			
(No derivation)			
3.6 Comparison between AM,FM & PM			
4 Receivers	12	07	CO1&C O3
4.1 Characteristics of Receivers : Sensitivity, Selectivity & fidelity (definitions)			
4.2 AM Receivers :			
 TRF receiver : Block diagram, Operation & limitations Superheterodyne Receiver: Block diagram & operation 			
4.3 FM Receiver:			
Block diagram & operation			
 Stereo FM multiplex transmitter and receiver: Block diagram, operation & frequency spectrum 			
5 Antennas& Wave Propagation	12	08	CO4
5.1 Antennas:			
 Antenna parameters:-definitions of antenna gain, antenna resistance, beam width and polarization. Construction and radiation pattern of Yagi-uda & parabolic reflector 			
(horn feed) Antennas.			
5.2 Wave Propagation			
Ground Wave propagation			
• Sky Wave Propagation: Ionosphere & its effect, definitions of virtual height, critical frequency, skip distance, fading, maximum usable frequency.			
Space Wave propagation			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Basics of communication Engg	07	12
2	Amplitude Modulation	14	21
3	Angle Modulation	12	18
4	Receivers	07	12
5	Antennas& Wave Propagation	08	12
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Perform Amplitude Modulation on trainer kit. (Observe and draw the	
	waveform of AM & calculate modulation index of AM)	
2.	Perform Amplitude Demodulation on trainer kit.(Observe and draw the	
	input waveform and output waveform)	
3.	Test the performance of SSB SC AM Modulation on trainer kit.	
4.	Test the performance of SSB SC AM Demodulation on trainer kit	
5.	Test the performance of DSB-SC AM modulation on trainer kit.	
6.	Perform frequency modulation on trainer kit.(Observe and draw the	
	waveform of FM)	
7.	Perform frequency demodulation on trainer kit.(Observe and draw the input	
	waveform and output waveform)	
8.	Test the performance of Superheterodyne Receiver on trainer kit.(Observe	
	the wave forms at various points in AM receiver)	
9.	Field visit to All India Radio Transmitter Station (Optional)	
	Total	25
No	Class room Assignments	Marks
1	Atleast 2 assignments	
•••		
No	Tutorial Exercise	Marks
1	NIL	
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers		
1	Kennedy,	Electronic &Communication	Tata McGraw Hill, India,		
	George	System	ISBN:978-00-746-3682-4		
	and Bernard				
	Davis				
2	Roddy Collen	Electronic communication	Pearson Education		
			ISBN:81-297-746-0106-5		
3	Mithal G.K	Radio Engineering	Khanna Publishers,		
			NewDelhi		
			ISBN:978-8174090140		

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	R P Singh & S	Communication Systems	Tata McGraw Hill, India
	D Sapre		ISBN:13-978-0-07-063454-1

(CC303) Circuits & Networks

1.COURSE OBJECTIVES:

The course is designed to introduce students to the facts, concepts & principles of electrical &electronics engineering circuits. The course aims to develop among student understanding to analyze and test different DC &AC circuits.

2. TEACHING AND EXAMINATION SCHEME

Semester	III									
Course coo	le &	Peri	ods/V	Veek	Total	Examination Scheme				
course ti	tle	(iı	n hou	rs)	Hours	The	ory	ory Practical Tota		Total
						Ma	rks	ks Marks		Marks
Circuit	s	L	Т	Р	Η	TH	TM	TW	PR/OR	
&Networ	·ks	3	-	2	5	75	25	25	-	125
(CC303)									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand network concepts, theorems & resonance
- 2. Interpret the response of different RLC circuits to AC supply.
- 3. Apply various theorems to simplify resistive circuits.
- 4. Design basic electrical filters.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn& Testing	Engg. Practices for Society,Sustainabil ity & Environment	Project Management	Life -long Learning
CO1	3	3	2	2	1	2	2
CO2	3	3	3	3	0	2	3
CO3	3	3	3	3	1	3	3
CO4	3	3	3	3	1	2	2

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

M = Marks Thr = Teaching hours CO = Course Objectives]	
Unit	Μ	Thr	CO
1 BASIC TERMINOLOGY	6	4	1
1.1 Definitions of circuit, network, voltage, current, power, mesh,			
loop, node &branch, port.			
1.2 Definition of network elements			
Active & passive, Unilateral & bilateral, Linear & non-linear,lumped & Distributed.			
1.3 Energy Source			
Voltage & Current Sources			
Concept of Ideal & practical energy source			
1.4 Series & Parallel equivalent expressions of resistors, capacitors &			
inductors.(No derivations), Simplenumericals on it.			
2 NETWORK THEOREMS (RESISTIVE ONLY WITH DC	30	22	3
SOURCE)			
2.1 Voltage& Current Divider theorem—Statement of theorem, simple			
numerical on it.			
2.2 Kirchhoff's voltage& current Laws-Statement of laws & simple numerical on it.			
2.3 Concept of Mesh & Node analysis-Explanation of method & simple			
numerical(maximum 3 loops ,3 nodes)			
2.4 Superposition Theorem- Explanation of statement of theorem &			
simple numerical			
2.5 Thevenin's Theorem- Explanation of statement of theorem &			
simple numerical			
2.6 Maximum Power Transfer Theorem Explanation of statement of			
theorem & simple numerical,			
2.7 Star Delta transformation - Explanation of conversion from star to			
delta & vice versa, simple numerical on it			
3 AC CIRCUITS	20	10	2,1
3.1 Response of basic R,L,C,RL, RC,RLC elements to AC signal.			
3.2 Phasor diagrams of series RC & series RL circuits, Concept of			
impedance.			
3.3 Simple problems to find impedance, VR, VC, VL, Phase angle in above			
circuits			
3.4 Concept of series resonance Circuit .Graphical representation of			

Total	75	48	
5.3 Design formulae & numerical			
HPF-T type only)			
5.2 LPF, HPF, BPF, BRF (graphical interpretation), Constant k (LPF,			
5.2 I DE LIDE DDE DDE (graphical interpretation) Constant la (LDE			
5.1 Introduction of Filter circuits			
5 FILTERS	9	6	4
4.3 Derivations & Simple numerical on Zo, Zoc, Zsc (only for T type)			
circuit & open circuit impedance			
Two port networks: Symmetrical T & Pi networks4.2 Characteristics of two port network: Characteristic impedance, short			
4.1 Introduction & Applications:			
4 NETWORKS	10	6	3
	10		
3.6 RC Integrator & Differentiator for sine & square wave input.			
3.5 Concept of Q factor, Problems to calculate Q factor.			
Fr,Imax,F1,F2,Z.(Note: Resonance problems are of L4)			
resonance curve, bandwidth, half power frequencies. Problems based on			

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	BasicTerminology	4	6
2	Network Theorems(Resistive circuits with DC Source)	22	30
3	AC Circuits	10	20
4	Networks	6	10
5	Filters	6	9
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1	Verification of Ohms law and its application to series parallel circuits	
2	Verification of KVL and KCL	
3	Verification of superposition theorem	
4	Verification of Thevenin's theorem	
5	Verification of maximum power transfer theorem	
6	Study of RLC series resonance circuits	
7	RC Integrator and RC Differentiator	
8	Study of filters LPF & HPF, T & PI Type	
No	Class room Assignments	Marks
1	At-least two assignments	
2		
No	Tutorial Exercise	Marks
1	NIL	
2		
	Total	

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Sudhakar	Circuits & Networks	McGrawHill
	­ammohan		Education
2	B.L.Theraja	Basic electrical eng.Vol I	S.Chand
3	Royal Signals	Handbook of Line Communication	HMSO
4	B.R.Gupta &V.Singhal	Network filters & Transmission lines	S.K.Kataria & Sons
5	Schaum Series	Electrical Circuits	McGrawHill Education

SEMESTER IV

	DII	PLOMA IN ELECTRON CUI					INICAT CTURI		ENGIN	EERIN	IG -
	Code	Subjects	L	T	P	H	TH	TM	PR	TW	ТОТ
	EX401	Electronic Circuits	3	0	2	5	75	25		25	125
	EX407	Advanced Communication Engg	3	0	2	5	75	25		25	125
	EX403	8051 Microcontroller	3	0	2	5	75	25	25	25	150
FOURTH	EX404	Maintenance and Circuit simulation using CADD	0	0	4	4			50	25	75
	EX405	Linear Integrated Circuits	3	0	2	5	75	25	25	25	150
	EX406	Electronic Measurements & Instrumentation	3	0	2	5	75	25		25	125
			15	0	14	29	375	125	100	150	750

(EX401) ELECTRONIC CIRCUITS

1. COURSE OBJECTIVES:

The course is designed to introduce students to the working of various types of electronic circuits using transistors. The course aims to develop among student understanding to assemble and test the performance of transistor circuits.

2. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code &	Peri	Periods/Week		Total	Examination Scheme				
course title	(ii	n hours)	Hours	Theory		Practical		Total
					Marks N		Marks Marks		Marks
(EX401)	L	Т	Р	Н	TH	TM	TW	PR/OR	
ELECTRONIC	3	-	2	5	75	25	25		125
CIRCUITS									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CO1:Explain working of different electronic circuits based on transistors and their applications.

CO2: Classify and build transistor amplifiers

CO3: Analyze different types of feedback systems.

CO4: Develop transistor based electronic circuits.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimenta tn& Testing	Engg. Practices for Society,Susta inability & Environment	Project Management	Life -long Learning
CO1	3	1	1	2	0	0	1
CO2	3	1	2	2	1	1	2
CO3	1	2	1	1	0	0	0
CO4	3	2	3	3	2	3	3

Relationship : Low-1 Medium-2 High-3

Mapping Course Outcomes with Program Specific Outcomes

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	1	1
CO4	3	3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives		1	
Unit	Μ	Thr	CO
	21	15	CO1/
 Transistor biasing techniques and amplifiers Transistor biasing techniques: need and types (fixed & voltage divider 		15	CO1/ CO2/
biasing- comparison), Steps for selection of Q point for fixed and voltage divider			CO4
biasing, simple numerical on finding Q point(fixed and voltage divider biasing)			
1.2 Single stage transistor CE amplifier- working, frequency response	-		
1.3 General block diagram of multi-stage amplifier, necessity of multistage	-		
amplifiers			
1.4 Different coupling methods- working, frequency response, applications and	_		
comparison of:-			
 RC coupled 			
 Direct-coupled 			
 Transformer Coupled 			
2 Feedback Circuits	21	12	CO1/
			CO3/
2.1 Concept of feedback, block diagram of feedback systems, types of feedback,			CO4
merits and limitations of negative feedback			
2.2 feedback connections-Block diagram of voltage series, voltage-shunt, current-			
series, current –shunt			
2.3 Derivation of input impedance, output impedance, voltage gain, stability factor			
(for voltage series), simple numerical on feedback			
2.4 Bandwidth of a voltage series amplifier(block diagram only)			
Feedback with & without bypass capacitor in single stage CE amplifier			
2.5 Emitter follower circuit			
3 Power Amplifiers	12	9	CO1/
3.1 Need for Power amplifier, Difference between Power and voltage amplifier			CO2/
3.2 single ended power amplifier			CO4
3.3 Classification- A, B, AB; operation, comparison.			
3.4 Push pull, complimentary symmetry power amplifier (no analysis)	-		
4 Oscillators	12	06	CO1/
+ Oscillators	14	vv	CO3/
4.1 Principle of oscillations; Barkhausens criteria			CO4
4.2 Working of RC oscillators- phase shift and Wien Bridge. (numerical for	1		
frequency)			
4.3 Working of LC oscillators- Hartley, Colpitts and crystal oscillator (numerical	1		
for frequency)			
5 Multivibrators	09	06	CO1/
5.1 Multivibrator-operation of Astable (simple numerical on Ton and Toff), Bistable	1	1	CO4
and Monostable (simple numerical on pulse width)type circuit, List of applications			
5.2 Schmitt trigger circuit	1		
Total	75	48	1

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises & practical.

7. SPECIFICATION TABLE FOR THEORY/ MACKO-LESSON PLAN							
UnitNo	Unit	Number of lectures	Marks				
1	Transistor biasing techniques and amplifiers	15	21				
2	Feedback Circuits	12	21				
3	Power Amplifiers	9	12				
4	Oscillators	6	12				
5	Multivibrators	6	9				
	Total	48	75				

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS (Any 8)

No	Practical	Marks
1.	Assemble and test fixed bias circuit to determine Q point	
2	Assemble and test voltage divider bias circuit to determine Q point	
3	Assemble & Test a single stage CE amplifier without feedback	
4	Assemble & Test a single stage CE amplifier with feedback	
5	Test the performance of RC coupled amplifier	
6	Assemble and test Emitter follower	
7	Assemble and test performance of class A power amplifier	
8	Assemble and test the performance of Hartley oscillator	
9	Assemble and test the performance of Colpitts oscillator	
10	Assemble and test RC phase shift oscillator	
11	Assemble and test performance of Bistable multivibrator	
12	Assemble and test performance of Astable multivibrator	
13	Assemble and test performance of Schmitt trigger circuit	
	Total	25
	Class room Assignments	
	Atleast 2 assignments	

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Bhargava & Gupta	Basic Electronics&Linear circuits	McGraw Hill Education
2	Boylestad, Robert & NashelskyLouis	Electronic Devices and circuit theory	Pearson India Education Services Pvt Ltd
3	Mottershead Allen	Electronic devices and circuits : Introduction	Prentice Hall India Learning Private Limited

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	S Salivahanan	Electronic devices and circuits	Tata McGraw-Hill
	N Sreshkumar		
2	B.L.Theraja	A Textbook of Electrical Technology Vol. IV,	S Chand
	A.K.Theraja	Electronic Devices and Circuits	

(EX 407) Advanced Communications Engineering

1. COURSE OBJECTIVES:

The course is designed to understand Digital Communication methods and techniques used in Telecommunication. The course aims to develop among student understanding working of an Electronic telephone exchange.

2. TEACHING AND EXAMINATION SCHEME

Semester I									
Course code &	Per	Periods/Week		Total	Examination Scheme				
course title	(i	n hou	rs)	Hours	Theory		Practical		Total
					Marks		Marks		Marks
Advanced	L	Т	Р	H	TH	TM	TW	PR/OR	
Communication	3	-	2	5	75	25	25	-	125
Engineering									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Describe the working of an Electronic telephone exchange, pulse and digital modulation circuits and multiplexing circuits.
- 2. Differentiate between multiplexing techniques, switching techniques, methods of digital & pulse modulation.
- 3. Analyze the working of pulse and digital modulation systems used in telecommunication field.
- 4. Analyze the working of a telephone exchange system during call processing.

4. Mapping Course Outcomes with Program Outcomes

4. Mapping Course Outcomes with Hogram Outcomes										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7			
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime ntatn&	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning			
CO1	2	0	1	0	0	2	3			
CO2	2	2	2	2	0	2	3			
CO3	2	1	3	3	2	2	3			
CO4	2	1	1	2	2	2	3			

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

M = Thr = Teaching CO = Course Objectives Marks hours			
Unit	Μ	Thr	CO
1 Pulse Modulation Systems (No Mathematical derivations & Problems)	23	14	CO3
1.1 Introduction to Digital Communications			000
Shannon Hartley Law - Equation representing the law, Relation between channel			
capacity and noise.(only statement)			
Sampling Theorem - Statement and its significance. Working of sample and Hold			
circuit using an op-amp			
1.2 Pulse Amplitude Modulation			
Definition, Block diagram and typical circuit for generation of PAM.			
Types of PAM - Waveform for Natural, flat-top, single & double polarity PAM.			
Block diagram and typical circuit for demodulation of PAM.			
Aliasing effect and aperture effect in PAM, Anti-aliasing filter.			
1.3 Pulse Time Modulation			
Definition of PWM and PPM.			
Generation of PTM - Indirect and direct methods, Waveform for starting edge			
fixed, trailing edge fixed and centre fixed PWM and PPM.			
Modulator circuits for PWM and PPM using IC 555.			
Demodulation of PTM - Waveform for demodulation of PWM and PPM.			
Demodulator circuits for PWM and PPM using op-amp.			
2 Pulse Communication Systems(No Mathematical derivations & Problems)	15	10	CO3
2.1 Pulse Code Modulation	10	10	005
Block Diagram of PCM Transmitter.			
C C			
Quantization, Quantization error, Companding.			
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver.			
Quantization, Quantization error, Companding.Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation			
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver.			
Quantization, Quantization error, Companding.Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver. 2.3 Delta Modulation			
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver. 2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver.			
Quantization, Quantization error, Companding.Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver. 2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver.Limitations of DM- Slope Overload and granular noise.			
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver. 2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver.			
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver.2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver.2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver. Limitations of DM- Slope Overload and granular noise.2.4 Adoptive Delta Modulation			
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver.2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver.2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver. Limitations of DM- Slope Overload and granular noise.2.4 Adoptive Delta Modulation	14	09	
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver.2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver.2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver. Limitations of DM- Slope Overload and granular noise.2.4 Adoptive Delta Modulation Block Diagram of ADM Transmitter and Receiver.3 Digital Modulation Techniques(No Numerals)3.1 Amplitude Shift Keying	14	09	CO4
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver. 2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver. Limitations of DM- Slope Overload and granular noise. 2.4 Adoptive Delta Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Techniques(No Numerals) 3.1 Amplitude Shift Keying Definition, waveform, block diagram for generation and detection of ASK	14	09	CO4
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver. 2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver. Limitations of DM- Slope Overload and granular noise. 2.4 Adoptive Delta Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Techniques(No Numerals) 3.1 Amplitude Shift Keying Definition, waveform, block diagram for generation and detection of ASK 3.2 Frequency Shift Keying	14	09	
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver. 2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver. Limitations of DM- Slope Overload and granular noise. 2.4 Adoptive Delta Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Definition, waveform, block diagram for generation and detection of ASK 3.2 Frequency Shift Keying Definition, waveform, block diagram for generation and detection of FSK Types	14	09	CO4
Quantization, Quantization error, Companding. Block Diagram of PCM Receiver. 2.2 Differential Pulse Code Modulation Block Diagram of DPCM Transmitter and Receiver. 2.3 Delta Modulation Block Diagram of DM Transmitter and Receiver. Limitations of DM- Slope Overload and granular noise. 2.4 Adoptive Delta Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation Block Diagram of ADM Transmitter and Receiver. 3 Digital Modulation 3.1 Amplitude Shift Keying Definition, waveform, block diagram for generation and detection of ASK 3.2 Frequency Shift Keying	14	09	CO4

Basic Principle, waveform, Phasor diagram and block diagram for generation and			
detection of Binary PSK and Quadrature PSK.			
4 Multiple access techniques in Pulse communication.	05	03	CO2
4.1 Time Division Multiplexing			
Block diagram for TDM – PAM system.			
4.2 Frequency Division Multiplexing			
Block diagram for FDM – PAM system.			
4.3 Comparison of FDM and TDM			
Advantages and disadvantages of both TDM and FDM			
5 Electronic Telephone Exchange	18	12	CO1
5.1 Introduction to Electronic Exchange			
Basic terms related to an exchange.			
Basics of a switching system and classification of switching systems			
Elements of a Switching system - Block diagram and working			
5.2 Electronic Space Division Switching			
Concept of Stored Program Control			
Centralized SPC - Typical block diagram, Single and dual processor systems,			
Three modes of operation(Standby, Synchronous duplex and Load sharing)			
Distributed SPC - Level 3, Level2 and Level 1 processing			
5.3 Time Division Switching			
Time Division Space Switching: Concept and three types - Input controlled,			
output controlled and memory controlled			
Time Division Time Switching Concept and methods of control (listing and			
definition only)			
5.4 Call processing			
Steps involved in call processing sequence	<u> </u>		<u> </u>
		40	
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Pulse Modulation Systems	14	23
2	Pulse Communication Systems	10	15
3	Digital Modulation Techniques	09	14
4	Multiple access techniques in Pulse communication	03	05
5	Electronic Telephone Exchange	12	18
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Perform any 8)	Marks
1.	Generation and Demodulation of PAM using trainer kits/typical circuits	
2.	Generation and Demodulation of PWM using trainer kits/typical circuits	
3.	Generation and Demodulation of PPM using trainer kits/typical circuits	
4.	Generation and Demodulation of PCM & DPCM using trainer kits/typical circuits	
5.	Generation and Demodulation of DM & ADM using trainer kits/typical circuits	
6.	Generation and Demodulation of ASK using trainer kits/typical circuits	
7.	Generation and Demodulation of FSK using trainer kits/typical circuits	
8.	Generation and Demodulation of BPSK using trainer kits/typical circuits	
9.	Generation and Demodulation of TDM - PAM using trainer kits/typical circuits	
10	Generation and Demodulation of FDM - PAM using trainer kits/typical circuits	
		25
No	Tutorial Exercise	Marks
1	At least 10 problems on each unit given above	
2		
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	RP Singh & SD Sapre	Communication system 2 nd edition	Tata McGraw-hill
			publishing
2	Thiagarajan	Telecommunication Switching	Prentice Hall India
	Viswanathan	Systems and Networks	

(EX403) 8051 MICROCONTROLLER

1. COURSE OBJECTIVES:

The course is designed tounderstand the architecture and features of 8051 microcontroller. The course aims to develop among student understanding to write, debug and execute 8051 programs and to develop 8051 application circuits.

2. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code &	Per	Periods/Week		Total	Examination Scheme				
course title	(i	in houi	rs)	Hours	Theory Marks Practical Marks		Total		
(EX403)	L	Т	Р	Н	TH	ТМ	TW	PR/OR	Marks
8051 Microcontroller	3	-	2	5	75	25	25	25	150
WIICI OCOIILI OIIEI									

3.COURSE OUTCOMES:

On successful completion of the course, students will be able to:

- 1. Explain the features of 8051 microcontroller and contrast between microcontrollers & microprocessors.
- 2. Classify and interpret 8051 assembly language instructions
- 3. Develop, execute and debug assembly language programs for various applications
- 4. Interface 8051 microcontroller with external hardware for various applications

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	2	3	1	1	2	3
CO2	2	2	3	3	1	3	3
CO3	3	3	3	3	3	3	3
CO4	2	3	3	2	3	3	3

Relationship : Low-1 Medium-2 High-3

Mapping Course Outcomes with Program Specific Outcomes

	PSO1	PSO2
CO1	3	3
CO2	3	3
CO3	3	3
CO4	3	3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLANM = MarksThr = Teaching hoursCO = Course Objectives]	
Unit	М	Thr	CO
1 Introduction to microcontrollers and 8051 microcontroller	15	09	CO1
1.1 Definition of embedded system, use of microcontrollers in embedded systems			
1.2 Difference between Harvard and Von Neumann architecture, microcontroller			
and microprocessor			
1.3 Advantages of microcontroller-based systems			
1.4 Architecture of 8051, it's pin functions, clock and oscillator			
1.5 Memory organization of 8051 - RAM, ROM, SFRs, flags; connections to			
external memory			
1.6 Ports of 8051 – registers, I/O configuration, features			
2 8051 additional built-inhardware and control	18	11	CO1
2.1 Timers/Counters – registers, modes of operation, configuration			
2.2 Interrupts – types (external & internal), priority, registers, configuration,			
interrupt-handling, interrupt service routine, ISR vector addresses			
2.3 Serial I/O – registers, configuration, serial data transfer operation			
3 Assembly language instructions for 8051 microcontroller	12	08	CO2
3.1 Addressing modes			
3.2 Assembly language instructions - data move, arithmetic, logical, branching,			
bit-wise			
4 Assembly language programming for 8051 microcontroller	18	12	CO3
4.1 Programs using assembly language for the following:			
Data transfer between internal memory locations, data transfer to/from external			
memory, writing data to and reading data from ports			
Binary arithmetic (binary addition, subtraction, multiplication, division), BCD			
addition			
Logical operations			
Bit-wise operations			
Branching operations			
Subroutines, time delay subroutines, interrupt subroutines			
(Students to be examined on assembly language programs that can include			
a combination of any instructions.			
Minimum instruction set should be provided to students during the			
examination)	10		001
5 Interfacing external hardware to 8051 microcontroller	12	08	CO4
5.1 Hardware connections and programs to interface the following to the 8051			
microcontroller:			
LED and seven-segment display, LCD (Only interface diagram, no program for			
LCD)			
Switch and matrix keyboard			
Stepper motor			
IR sensor	75	40	
Total	75	48	

6. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies, laboratory practical, etc.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to microcontrollers and basics of 8051 microcontroller	09	15
2	8051 additional built-in hardware and control	11	18
3	Assembly language instructions for 8051 microcontroller	08	12
4	Assembly language programming for 8051 microcontroller	12	18
5	Interfacing external hardware to 8051 microcontroller	08	12
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Minimum FIVE - List 1	
1.	Program to add, subtract, multiply and divide two numbers	
2.	Program to add N binary numbers	
3.	Program to add BCD numbers	
4.	Program to transfer N data bytes within memory	
5.	Programs to implement logical instructions AND, OR, XOR, NOT	
6.	Program to implement logical instructions to swap and rotate data	
7.	Program to determine the largest/smallest binary number	
	List 2	
8.	Hardware interface of 8051 board to LEDs and assembly language program for	
	blinking LEDs using bitwise instructions and software time delay routines	
9.	Hardware interface of 8051 board to LEDs and assembly language program for	
	blinking LEDs using timer	
10.	Hardware interface of 8051 board to stepper motor and assembly language	
	program to drive stepper motor	
11.	Hardware interface of 8051 board to LCD and assembly language program to	
	display data on LCD	
	Total	25
No	Class room Assignments	
	At least 2 assignments	

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Muhammad Mazidi,	The 8051 Microcontroller and	Pearson
	Janice Mazidi, Colin	Embedded Systems	
	McKinlay		
2	Kenneth Ayala	The 8051 Microcontroller	Cengage Learning

Reference Books for further study

S. No.	Author	Title of Books		Publishers
1	MykePredko	Programming and customizing	the	McGraw-Hill
		8051 Microcontroller		

(EX404) MAINTENANCE AND CIRCUIT SIMULATION USING COMPUTER AIDED DESIGN AND DRAFTING

1. COURSE OBJECTIVES:

The aim of this course is to develop required skills in the students so that they are able to:

(i) Maintain the electronic circuits of various equipment

(ii) Design a Printed Circuit Board

(iii) Simulate a given circuit using EDA tools.

The students will able to:

- 1. Develop skills to maintain basic electronic circuitry used in consumer goods segments
- 2. Design a Printed Circuit Board
- 3. Simulate electronic circuits using EDA tools.

2. TEACHING AND EXAMINATION SCHEME

Semester IV																																	
Course code &	Total	Examination Scheme																															
course title	(ir	n hour	rs)	Hours	The	ory	Pra	actical	Total																								
					Marks		Marks		Marks		Marks		Marks		Marks		Marks		Marks		Marks		Marks		Marks		Marks		Marks		Marks		Marks
(EX404)	L	Т	Р	Н	TH	TM	TW	PR/OR																									
MAINTENANCE																																	
AND CIRCUIT																																	
SIMULATION	-	-	4	4	-	-	25	50	75																								
USING CADD																																	

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Test various electronic components
- 2. Use test & measurement equipment to find faults and maintain electronic circuits
- 3. Apply EDA tools to design Printed Circuit Boards.
- 4. Design, simulate and analyze electronic circuits using EDA tools.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society,Susta inability & Environment	Project Management	Life -long Learning
CO1	2	2	1	2	2	2	2
CO2	3	3	1	3	3	2	2
CO3	2	1	3	1	2	2	2
CO4	2	2	2	2	2	2	3

4. Mapping Course Outcomes with Program Outcomes

	PSO1	PSO2
CO1	2	0
CO2	2	0
CO3	1	3
CO4	1	3

Mapping Course Outcomes with Program Specific Outcomes

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	CO
1. Testing of Electronic Components		14	1,2
1.1 Standard values and ratings of resistors and capacitors			· · ·
1.2 Reading of datasheets (IC 741, 555, 723)			
1.3 Testing of passive components- Cold testing of resistors, capacitors,			
switches, fuses, connectors, inductors, relays, transformers, crystals			
1.4 Testing of active components- Diodes, BJTs, JFETs, MOSFET's, SCR,			
DIAC, TRIAC, Displays using LED and Opto electronics components, ICs			
2. Testing and Maintenance of Electronic Circuits (Use multimeter)		10	1,2
2.1 Measurement of A.C. and D.C. voltage			
2.2 Continuity test of PCB track, wiring, switch etc.			
2.3 Inspection of solder joints, defects of soldered joints, defects of soldered			
joints, use of soldering gun, desoldering tools and rework station.			
2.4 Maintenance of any two home appliances			
3. PCB Design		18	3,4
3.1 Prepare components for soldering, soldering and de- soldering techniques.			
3.2 Exposure to computer aided PCB making (layout from given schematic)			
3.3 Design of PCB (any electronic circuit) using the automated layout.			
3.4 Concept of machine soldering, SMD soldering (could be imparted though			
online videos)			
4. Circuit building and debugging using EDA tools		11	3,4
4.1 Introduction to EDA tools and need for the same			
4.2 Simulation of simple R/RC/RLC networks			
4.3 Simulate a power supply circuit for specified I,V,P rating			
4.4 Simulation of summer/ averaging)/ comparator/ zero crossing detector/			
Schmitt trigger/ integrator/differentiator using op-amps			
5. Circuit simulation and documentation using EDA tools		11	3,4
5.1 Simulation of an astable multivibrator			
5.2 Simulation of a RC amplifier			
5.3 Simulation of an oscillator			
5.4 Simulation of a controller based circuit for specified application			
5.5 Prepare documentation i.e circuit diagram, bill of material, and			
specification table for any of the simulated circuit.			
5.6 Drafting and modification of piping and instrumentation diagrams.			
(AutoCAD 3D plant may be used)			
Total		64	

NOTE 1: For units 3,4 and 5, the student may use software tools like Orcad, Eagle ,TINA, Matlab, Labview, Autocad(P&ID), Automation Studio, Multisim, Proteus or any other suitable suite.

NOTE 2: The practical examination for CADD (50) will be based on the simulations carried out using EDA tools.

Term work marks (25) may be distributed for performance in testing electronic components and fabricating the PCB.

6. COURSE DELIVERY:

The Course will be delivered through lab sessions, study videos, group interactions, exercises and case studies

Unit	Unit	Number of	Marks
No		lectures	
1	Testing of Electronic Components	14	
2	Testing and Maintenance of Electronic Circuits	10	
3	PCB Design	18	
4	Circuit building and debugging using EDA tools	09	
5	Circuit simulation and documentation using EDA tools	13	
	Total	64	

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Hours
1.	Explore datasheet of any three electronics components/analog/ Digital IC's.	04
2	Testing of passive components- Cold testing of resistors, capacitors, switches, fuses, connectors, inductors, relays, transformers, crystal	04
3	Testing of active components- Diodes, BJTs, JFETs, MOSFET's, SCR, DIAC, TRIAC	04
4	Testing of Displays using LED and Opto electronics components, ICs	02
5	To test continuity of PCB tracks, identify solder defects and rectify faults where possible	02
6	Maintenance/repair (if possible) of any two home appliances	08
7	Study of soldering and de-soldering techniques	02
8	Study of any computer aided PCB making (layout from given schematic)	08
9	Design of a PCB of any electronic circuit	08
	The following circuits may be simulated using any suitable EDA tool	0
10	Introduction to EDA tools and need for simulation Simulation of simple R/RC/RLC networks	02
11	Simulate a power supply circuit for specified I,V,P rating	01
12	Simulation of a summer/ averaging/ comparator/ zero crossing detector/ Schmitt trigger / integrator/ differentiator using opamps	06
13	Simulation of an Astable multivibrator	02
14	Simulation of a RC amplifier	02
15	Simulation of an oscillator	02

ELECTRONICS & COMMUNICATION ENGINEERING CURRICULUM

16	Simulation of a controller based circuit for specified application	03
17	Prepare documentation i.e circuit diagram, bill of material, and specification	02
	table for any of the simulated circuit.	
18	Use AutoCAD 3D plant to draft and modify piping and instrumentation	02
	diagrams.	
	TOTAL HOURS	64

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers			
1	Singh K. Sudeep	Troubleshooting and Maintenance of	Katson Book, New			
-		Electronics Equipment	Delhi, Reprint 2014			
	Khandpur R. S	Troubleshooting Electronic Equipment:	Tata McGraw-Hill			
2	_	Includes Repair and Maintenance	Education, New			
Z		-	Delhi, India			

(EX405) LINEAR INTEGRATED CIRCUIT

1. COURSE OBJECTIVES:

The course is designed to introduce students to working and applications of different Linear ICs. The course aims to develop among student understanding to analyze the working of a given OPAMP based circuits and develop simple circuits using Linear ICs.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course code &		Periods/Week			Total		Examination Scheme			
course title		(in hours)		Hours	The	Theory		actical	Total	
						Maı	rks	Μ	larks	Marks
									-	
		L	Т	Р	Н	TH	TM	TW	PR/OR	
(EX405) LINEAR INTEGRAT CIRCUIT	ED	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the parameters & specifications of various ICs.
- 2. Explain op-amp based circuits, 555 timer and regulators.
- 3. Compare and select appropriate IC based circuit for specific application.
- 4. Analyze and build IC based circuits.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society,Sust ainability & Environment	Project Management	Life -long Learning
CO1	3	2	2	1	0	0	3
CO2	3	2	1	2	0	1	2
CO3	3	3	2	2	1	1	2
CO4	2	2	2	1	1	1	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
C01	3	2
CO2	3	2
CO3	3	2
CO4	3	2

Mapping Course Outcomes with Program Specific Outcomes

Note:- IC Pin diagrams should not be asked in theory examination

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	М	Thr	CO
1Introduction to operational amplifiers	12	8	CO1
1.1 Integrated circuit –List of IC Classification List of IC Packages.			
1.2Advantages of IC over discrete components			
1.3 Op-amp—Block diagram and function of each block			
1.4 Symbol and equivalent circuit of op-amp Pin configuration of IC741.			
1.5 Characteristics of ideal and practical Op-amp.			
1.6 Op-amp Parameters(only definition)- I/p offset voltage, I/p offset current, I/p bias current, o/p offset voltage, input impedance, output impedance, bandwidth, CMRR, slew rate.			
2 Op-amp configuration	9	6	CO1,C O2
2.1 Concept of Negative feedback			
2.2 Voltage series feedback amplifier- block diagram, circuit diagram , expression for voltage gain.(No derivation)			
2.3 Voltage shunt feedback amplifier- block diagram, circuit diagram, expression for voltage gain. (No derivation)			
2.4 Numerical problems based on voltage gain equation			
3 Applications of Op-Amp			
3.1 Inverting Op-amp as summing, scaling , averaging amplifier	21	12	CO1,C O2,C O3,C O4
3.2 Subtractor			
3.3 Voltage to current convertor (with grounded load only)			
3.4 Current to voltage convertor			
3.5 Integrator			
3.6 Differentiator			
3.7 Voltage comparators: Non-inverting with positive and negative reference			
3.8 Clippers: Positive with positive and negative reference			
3.9 Clampers : Non-inverting with positive reference			
4.0 Waveform generators and Filters			

4.1 Op-amp Wein bridge oscillator	15	10	CO1,C O2,C O3,C O4
4.2 Op-amp as Astablemultivibrator			
4.3 Triangular waveform generator.(Using 4.2)			
4.4 Concepts of active filters, comparison of active & passive filters			
4.5 Butter worth low pass filter (1st order only)			
4.6 Butter worth high pass filter (1st order only)			
4.7 Simple numerical problems on above filters.			
5 Special function ICs			
5.1 Block diagram of IC 555 and its pin configuration/ functionality	18	12	CO1,C O2,C O3,C O4
5.2 IC555 as Astablemultivibrator			
5.3 IC555 as Monostablemultivibrator			
5.4 Numerical problems (no derivations)			
5.5 Voltage regulators performance parameters of a regulator – load & line regulation and ripple rejection			
5.6 Salient features of three pin regulators, IC78XX series and IC79XX series fixed voltage regulators.			
5.7 Adjustable Positive voltage regulator using LM317: Circuit diagram, working, Output voltage equation (No derivation)			
5.8 VCO IC 566 block diagram and list of applications			
Total			
	75	48	-

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to operational amplifiers	8	12
2	Op-amp configuration	6	9
3	Applications of Op-Amp	12	21
4	Waveform generators and Filters	10	15
5	Special function ICs	12	18
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1		
1.	Determine the op-amp parameters	
2.	Determine the gain of Inverting and Non-inverting amplifier using op-amp and compare it with theoretical gain.	
3.	Verify the operation of Adder and Subtractor circuit.	
4.	Verify the working of active integrator and differentiator circuits.	
5.	Assemble and test V to I converter.	
6.	Verify the working of Comparator	
7.	Assemble and test Clipper circuit.	
8.	Assemble and test Clamper circuit.	
9.	Assemble and test first order filter.	
10.	Assemble and test Astablemultivibrator using OPAMP	
11.	Assemble and test a multivibrator circuit using IC 555.	
12.	Assemble and test a IC fixed voltage regulator	
13	Assemble and test an Adjustable positive voltage regulator	
14	Test a VCO.	
	Total	25
	Class room Assignments	
	Atleast 2 assignments	

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers		
1	RamakantGayakwad	Op-Amps and Linear Integrated	Pearson Education		
		Circuit			
2	K.R. Botkar	Integrated Circuit	Khanna		

Reference Books for further study

S. No.	Author	Title of Books	Publishers		
1	David A.Bell	Op-amp & Linear ICs	Prentice Hall of		
			India		
2	Dr.Y.	Linear Integrated Circuits &	ISTE		
	Venkataramani	Applications			

(EX406) ELECTRONIC MEASUREMENT AND INSTRUMENTATION

1. COURSE OBJECTIVES:

The course is designed to introduce students to measurements and measuring instruments and various sensors. The course aims to develop among student the following

- 1. Employ appropriate instruments to measure a given set of parameters.
- 2. Deep understanding about blocks in various instruments used in practicals.
- 3. Identify various sensors that will be useful in measuring different parameters in industry

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course code & course title		Periods/Week (in hours)			Total Hours	Examination Scheme				
						Theory		Practical		Total
						Ma	rks	Μ	larks	Marks
(EX406) ELECTRO	ONIC	L	Т	P	Н	TH	TM	TW	PR/OR	
MEASUREMENT AND		3	-	2	5	75	25	25	-	125
INSTRUMENTAT	ION									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the working of analog and digital instruments and transducers
- 2. Classify different types of errors in measurements
- 3. Use appropriate instrument/bridges for measurement and testing of electronic circuits
- 4. Compare and select appropriate transducer/ instrument for specific application

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society,Susta inability& Environment	Project Management	Life -long Learning
CO1	3	2	3	0	0	2	3
CO2	3	2	2	2	2	2	3
CO3	3	2	2	2	2	2	3
CO4	2	3	3	3	2	2	3

Relationship : Low-1 Medium-2 High-3

Mapping Course Outcomes with Program Specific Outcomes

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	2	2
CO4	3	3

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	CO
1 Basics of Measuring Instruments	9	6	1,2
1.1 Static Characteristics- Accuracy, Resolution (only Definitions)			
1.2 Dynamic characteristics- Speed of response, Lag, Fidelity			
1.3 Error: Systematic, Limiting Errors, numerical on error			
calculation, systematic and limiting errors.			
1.4 Construction and working of PMMC movement, BlockDiagram of			
Analog Multimeter, Digital Multimeter.			
2 Generators, Bridges and Display	24	15	3
2.1 Oscilloscope - Block Diagram of CRT and CRO, Types of CRO-			
Dual trace , DSO			
2.2 Block Diagram of Function Generator			
2.3 Block Diagram of Basic Spectrum Analyzer			
2.4Bridges : Wheatstone, Maxwells, Schering, WeinBridge, along with			
numerical for each type of bridge.			
2.5 Digital Display- working of LED and LCD			
3 Instrumentation System and Transducers	18	12	1
3.1 Block Diagram of Instrumentation System and their functions			
3.2 Transducer - Characteristics, classification(Active and Passive,			
Analog and Digital)			
3.3Resistive Transducer - Potentiometer, Strain Gauge(Bonded and			
Semiconductor), RTD, Thermistor.			
3.4 Inductive Transducer : LVDT			
3.5 Capacitive Transducer – Varying of distance, area, permittivity			
3.6Piezoelectric Transducer – Principle and material used.			
3.7 Optical Transducer : Construction and characteristics of LDR,			
Photodiode, phototransistor			
3.8 Digital Transducer : construction and working of Shaft Encoders			
4 Applications of Transducers	15	8	4
4.1 Displacement Measurement – Linear and angular displacement using			
Resistive, Capacitive and Inductive Transducer			
4.2 Angular Speed Measurement - Photoelectric pickup, magnetic pick up			
4.3 Pressure Measurement – Diaphragm with strain gauge			
4.4 Level Measurement - Float operated resistive method			
4.5 Flow Measurement : Turbine Meter			
5 Application of Instrumentation Systems	9	8	4
5.1 signal conditioning – Need for Signal Conditioning, Block Diagram of			
AC and DC			
5.2 Block Diagram and applications of the following:			
Data Acquisition System			
Process Control			
• SCADA	<u> </u>	<u> </u>	
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

UnitNo	Unit	Numberof lectures	Marks
1	Basics of Measuring Instruments	6	9
2	Instrumentation System and Transducers	15	24
3	Instrumentation System and Transducers	12	18
4	Applications of Transducers	9	15
5	Application of Instrumentation Systems	6	9
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Measurement of current, voltage and resistance using PMMC meter	
2	Measurement of current, voltage, frequency and time period using CRO	
3	Testing of Wheatstone's Bridge	
4	Testing of Maxwell's bridge	
5	Temperature measurement using RTD	
6	Displacement measurement using LVDT	
7	Weight measurement using strain gauge bridge	
8	Speed measurement of motor using photo electric pickup	
9	Liquid level measurement	
10	Study of light sensors, photo transducers, Piezoelectric transducer	
	Total	25
	Class room Assignments	
	At least 2 assignments	

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Cooper	Electronic measurement and instrumentation	Prentice Hall
2	H. S. Kalsi	Electronic measurement and instrumentation	McGraw Hill India
3	A.K. Sawhney	Electrical & Electronic Measurement and	Khanna Publishers,
		Instrumentation	Delhi

Referen	Reference Books for further study									
S. No.	Author	Title of Books	Publishers							
1	Curtis	Process Control Instrumentation technology	Pearson/Prentice							
	Johnson,		Hall							
2	Murty,	Transducers and Instrumentation	Prentice Hall of							
	D.V.S.,		India, New Delhi,							
3	Doeblin,	Measurement Systems: Application and	McGraw Hill							
		Design	India							

SEMESTER V

(TR 501) Industrial Training

1. AIM

To expose & prepare the students for the Industrial work situation. This exposure and hands on experience will further enhance the prospects of student fraternity to be better placed on completion of their course.

2. COURSE OBJECTIVES:

The students will able to:

- i. Understand functions of various departments of the industry while working in the industry.
- ii. Observe & familiarize with features of raw materials, machines, tools, products & processes of the particular industry
- iii. Work in the team to develop teamwork, leadership & communication skills
- iv. Develop technical skills as well as soft skills

3. PRE-REQUISITES:

i) Basic Engineering Skills

4.	TEACHING	AND	EXAMINATION	SCHEME

Semester	V									
Course code	e &	Periods/Week		Total		Examination Scheme				
course titl	e	(in	ı hou	rs)	Credits	Theory Practical Marks Marks			Total Marks	
(TR 501))	L	Т	P	С	TH	TM	TW	PR/OR	
Industria Training		-	-	4	4	-	-	70	30	Grade
		08 Wee	eks							

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the organizational set up & functions of various departments in the industry
- Apply the knowledge gained in the institute to correlate with the actual processes in the industry &Compile relevant data in the form of a report.
- 3. Develop leadership, teamwork & communication skills while having hands on experience in theindustry

4. Demonstrate consciousness towards safety & environment by adapting to the rules & regulations of Industry

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentati on & Testing	Engg. Practices for Society, Sustainability Environment	Project Management	Life -long Learning
CO1	2	1	2	2	3	3	3
CO2	3	3	2	3	3	3	3
CO3	1	2	2	2	3	3	3
CO4	1	2	1	2	3	3	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	3
CO2	3	3
CO3	3	3
CO4	3	3

- 1.1 Students are required to study and have hands-on experience wherever possible in thefollowing areas (depending on availability):
 - Company Profile
 - Organizational Structure
 - Company Product Range
 - Manufacturing Facilities Available /Services provided
 - Plant / Facility Layout
 - Operations / Production Processes
 - Production Planning and Control
 - Detail study of Latest Equipment/ Technologies Used
 - Stores Functions
 - Material Handling Systems/ Equipments
 - Quality Management Systems / Functions
 - Maintenance and Repair Practices
 - Safety Practices / Safety Equipments
 - Utilities
 - Logistics
 - Sales and Marketing
 - Ethics, Statutory Rules and Regulations followed
 - Product Design and Development
 - Any other area specific to the Industry providing Training

Evaluation Scheme								
	TW PR/OR							
Attendance	Industrial	Institute	Training	Report	TOTAL			
Marks*	Mentor's	Mentor's	Report	Assessment	Marks			
	assessment	assessment		&				
	Marks	Marks		Seminar/Viva				
10	20	20	20	30	100			

8. TERM WORK & PRACTICALS

* 01 mark shall be deducted for every Absence (with or without permission).

Daily Dairy :

The daily dairy should-be maintained in a book. It should reflect the day to day activities performed by the student (including task, men and materials involved). It should be counter signed by the Industry Mentor. It will become the basis for writing reports on the complete training.

Training Report

The training report should be submitted by the training students should include the following salient points- Certificate from institute, Certificate of training from company, detailed write up as per daily dairy, detailed drawings, working drawings, photographs, safety precautions, techniques for work minimization on site, organizational chart, Importance of project to the society, special methods/techniques/equipment should be separately high lightened, including environmental aspects. The report should be informative and technical, typed with double spacing on good quality bond paper and bound. Assessment of Training Report be based on Knowledge, Presentation, Quality of contents and Sketches.

Note:

- a. Student/s undergoing Industrial Training shall follow Rules and Regulations of the Industry.
- b. Industrial Training will generally be organized and conducted in accordance with Industrial Training Manual duly prescribed by the Board.

Unit No	Name of the Unit	Teaching Hours	Marks
1	PR/OR	08 weeks	30
2	TW		70
	Total	08 weeks	100

9. SUGGESTED SPECIFICATION TABLE WITH MARKS & HOURS

Note:

1. For Industrial training Grades will be awarded based on marks scored as follows:

80% and above Marks – Grade 'A'

60% to 79% Marks – Grade 'B'

40% to 59% Marks – Grade 'C'

Marks below 40% - Grade 'D'

2. TW and PR/OR shall be separate heads of passing. Student has to secure minimum Grade 'C' for passing.
(CC 602) BUSINESS COMMUNICATION

1. COURSE OBJECTIVES:

The students will able to:

- 1. Use speaking, writing and presentation skills to communicate effectively.
- 2. Develop business etiquettes, manners, grooming and improve personal appearance
- 3. Improve non-verbal forms of communication.

2. TEACHING AND EXAMINATION SCHEME

Semester	VI													
Course code	&	Peri	iods/V	Veek	Total		Exan	ninatior	n Scheme					
course title	•	(iı	n hou	rs)	Hours	Theory		Theory		Theory Practical		Theory Practical		Total
						Marks		Marks		ks Marks		Marks		
				-					-					
(CC 602) BUSI	NESS	L	Т	Р	H	TH	TM	TW	PR/OR					
COMMUNICA	ΓΙΟΝ	-	-	2	2	-	-	25	25	50				

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

GC602.CO1: Apply principles of effective communication in business environment

GC602.CO2: Use ICT in business communication effectively.

GC602.CO3: Demonstrate soft skills required in business environment.

GC602.CO4: Prepare technical writing for various functions of business communication.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	0	1	0	1	2	2	0	1
CO2	2	2	2	1	2	2	3	1	2
CO3	2	2	2	1	2	2	3	1	2
CO4	1	1	1	1	2	3	3	0	3

Relationship : Low-1 Medium-2 High-3

M=Phr =Practical hoursCO = Course OutcomesMarks			
Unit	Μ	Phr	СО
1 COMMUNICATION SKILLS AT WORKPLACE			
1.1 Principles of communication in business			
Importance of communication in a business organization, types			
of communication (formal and informal Internal and External		04	CO1
Communication), Channels of communication: Vertical,			CO2
Horizontal, Diagonal, Grapevine			CO3
1.2 Modern Office technology for communication:			CO4
email communication and sending text (etiquettes,			
components, tips for writing effective emails, spellcheck),			
internet and use of social media for work (to communicate,			
search for information about suppliers, specifications,			
networking, quick feedback, e-commerce, video conferencing)			
2 SEMINARS			
2.1 Organization of seminars and workshops			
Organizers role: planning, objectives, topic selection, planning			
the date, time, venue, creating event organization material:		_	
creating Facebook page, WatsApp group, invitations,		06	CO1
advertisement on pamphlet, hand-outs, signage, name badges,			CO2
registration form, press note, inviting key note speaker, schedule			CO3 CO4
2.2 Presentation			COT
Speakers role: Gathering relevant material, organization of the			
material, knowing the occasion and audience, preparing			
handouts for distribution, time management, interaction with			
audience, non-verbal communication. (Checklist of significant			
aspects of oral presentation to be provided)			

2.3 Role of audience Audience's role: Listening effectively and asking relevant questions, note taking 3 TECHNICAL WRITING 3.1 Reports Understanding objective report writing, types of reports, parts of a formal report, illustrations inspection reports: procedure and format, Project Report 10 CO1 CO2 Sales letters: procedure and format, Project Report CO3 3.7 Enders Sales letters: elements of a complaint letter adjustment letter: elements of a madjustment letter 3.3 Tenders procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting advertisement for tender. 3.4 Generic notices, notice for meetings: purpose, format of notice for meeting, agenda, quorum and writing minutes 06 CO1 4 JOB INTERVIEWS CO4 CO4 CO4 4.1 Joh application and resume draft letter of acceptance and cold contact letter 06 CO1 CO2 CO4 CO4 CO4 5. SOFT SKILLS Solisiness etiquettes and manners, Tips for good business etiquettes 06 CO1 CO2 CO3 CO4 CO4 CO4 5. SOFT SKILLS Solisiness etiquettes 06 CO1				
3.1 Reports Understanding objective report writing, types of reports, parts of a formal report, illustrations inspection reports: procedure and format, Project Report 10 CO1 3.2 Business letters Sales letters: parts of sales letter complaint letter: elements of a complaint letter adjustment letters: elements of an adjustment letter 10 CO3 3.3 Tenders procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting advertisement for tender. 06 CO1 3.4 Generic notices, notice for meetings: purpose, format of notice for meeting, agenda, quorum and writing minutes 06 CO1 4 JOB INTERVIEWS 11 CO1 CO2 4.1 Job application and resume draft letter of acceptance and cold contact letter CO4 CO4 5 SOFT SKILLS Silbusiness etiquettes 10 CO1 5.2 Nonverbal Communication grooming, personal appearance, hygiene, deportment and body language 06 CO1 5.3 Interpersonal skills Leadership skills, team work, active listening CO3 CO4 CO3 CO4 CO4 CO4	Audience's role: Listening effectively and asking relevant			
3.1 Reports Understanding objective report writing, types of reports, parts of a formal report, illustrations inspection reports: procedure and format, Project Report 10 CO1 3.2 Business letters Sales letters: parts of sales letter complaint letter: elements of a complaint letter adjustment letters: elements of an adjustment letter 10 CO3 3.3 Tenders procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting advertisement for tender. 06 CO1 3.4 Generic notices, notice for meetings: purpose, format of notice for meeting, agenda, quorum and writing minutes 06 CO1 4 JOB INTERVIEWS 11 CO1 CO2 4.1 Job application and resume draft letter of acceptance and cold contact letter CO4 CO4 5 SOFT SKILLS Silbusiness etiquettes 10 CO1 5.2 Nonverbal Communication grooming, personal appearance, hygiene, deportment and body language 06 CO1 5.3 Interpersonal skills Leadership skills, team work, active listening CO3 CO4 CO3 CO4 CO4 CO4	3 TECHNICAL WRITING			
Understanding objective report writing, types of reports, parts of a formal report, illustrations inspection reports: procedure and format, Project Report10CO1 CO2 CO3 3.2 Business letters Sales letters complaint letters: elements of a complaint letter adjustment letters: elements of an adjustment letterCO4 3.3 Tenders procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting advertisement for tender.06 4. JOB INTERVIEWS 606CO1 CO2 CO2 CO3 4. JOb application and resume draft job application and resume, draft letter of acceptance and cold contact letter06CO1 CO2 CO2 CO4 5. SOFT SKILLS 5.IBusiness etiquettes Importance of business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes Importance of business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettesCO1 CO2 CO3 CO3 CO4 5. SOFT SKILLS 5.1Rustness etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettesCO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO4 </td <td></td> <td></td> <td></td> <td></td>				
Sales letters: parts of sales letter complaint letters: elements of a complaint letter adjustment letters: elements of an adjustment letter3.3 Tenders procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting advertisement for tender.3.4 Generic notices, notice for meetings: purpose, format of notice for meeting, agenda, quorum and writing minutes4 JOB INTERVIEWS4.1 Job application and resume draft job application and resume, draft letter of acceptance and cold contact letter4.2 Job interviews preparing for job interview, guidelines on facing job interviews, mock interviews5 SOFT SKILLS S1Business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes5.3 Interpersonal appearance, hygiene, deportment and body language6.3 Interpersonal skills Leadership skills, team work, active listening S.4 Critical thinking How to improve critical thinking, tips for critical thinking	Understanding objective report writing, types of reports, parts of a formal report, illustrations	10	CO2 CO3	
procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting 	Sales letters: parts of sales letter complaint letters: elements of a complaint letter			
4.1 Job application and resume draft job application and resume, draft letter of acceptance and cold contact letter06CO1 CO2 	 3.3 Tenders procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting advertisement for tender. 3.4 Generic notices, notice for meetings: purpose, format of notice for meeting, agenda, quorum and writing minutes 			
draft job application and resume, draft letter of acceptance and cold contact letter00CO1 CO2 CO44. 2 Job interviews preparing for job interview, guidelines on facing job interviews, mock interviews06CO15 SOFT SKILLS 5.1Business etiquettes Importance of business etiquettes and manners, Tips for good business etiquettes06CO15.2 Nonverbal Communication grooming, personal appearance, hygiene, deportment and body language06CO15.3 Interpersonal skills Leadership skills, team work, active listeningCO3CO4				
preparing for job interview, guidelines on facing job interviews, mock interviewsInterviewsInterviewsInterviewsInterviews5 SOFT SKILLS5.1Business etiquettesImportance of business etiquettes and manners, Tips for good business etiquettes06CO15.2 Nonverbal Communication grooming, personal appearance, hygiene, deportment and body language06CO1CO25.3 Interpersonal skills Leadership skills, team work, active listeningCO4CO4CO45.4 Critical thinking How to improve critical thinking, tips for critical thinkingCO4CO4CO4	draft job application and resume, draft letter of acceptance and cold contact letter	06	CO2	
5.1Business etiquettesImportance of business etiquettes and manners, Tips for good business etiquettes5.2 Nonverbal Communication grooming, personal appearance, hygiene, deportment and body language5.3 Interpersonal skills Leadership skills, team work, active listening5.4 Critical thinking How to improve critical thinking, tips for critical thinking	preparing for job interview, guidelines on facing job			
Importance of business etiquettes and manners, Tips for good business etiquettes06CO1 5.2 Nonverbal Communication grooming, personal appearance, hygiene, deportment and body language06CO2 5.3 Interpersonal skills Leadership skills, team work, active listeningCO4CO4 5.4 Critical thinking How to improve critical thinking, tips for critical thinkingImportanceImportance				
grooming, personal appearance, hygiene, deportment and body languageCO3 CO45.3 Interpersonal skills Leadership skills, team work, active listeningCO3 CO45.4 Critical thinking How to improve critical thinking, tips for critical thinkingImage CO3 CO4	Importance of business etiquettes and manners, Tips for good business etiquettes	06		
Leadership skills, team work, active listening 5.4 Critical thinking How to improve critical thinking, tips for critical thinking	grooming, personal appearance, hygiene, deportment and body language		CO3	
5.4 Critical thinking How to improve critical thinking, tips for critical thinking	•			
How to improve critical thinking, tips for critical thinking				
Total 32 -				
	Total	32	-	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
		25
	Practical Title	
1.	Modern office technology	03
2.	Seminar	03
3.	Technical writing	10
4.	Job interviews	04
5	Soft skills	05
	Total	25
No	Class room Assignments	
1	Email communication	
2	Power point presentation	
3.	Drafting seminar invites	
4.	Drafting hand outs for seminars	
5	Drafting sales letter	
6	Drafting complaint letters	
7	Drafting adjustment letters	
8	Drafting tender notice	
9.	Filling maintenance reports	
10.	Drafting inspection reports	
11	Drafting abstract	
12	Drafting notice for meetings	
13	Drafting agenda of meetings	
14	Drafting minutes of meeting	
15	Drafting resume and job application	
16	Drafting letter of acceptance	
17	Drafting cold contact cover letter	
18	Group discussions	
19	Debates	
20	Group presentations	

8. LEARNING RESOURCES

8.1 Reference books

S. No.	Author	Title of Books	Publishers
1	P.Prasad, Rajendra k.	The functional aspects of	s.k. kataria &sons
	Sharma	communication skills	
2	Pal & Rorualling	Essentials of business	Sultan chand & sons
		communication	
3	Grount Taylor	English conversation practice	Tata MCgraw Hill
4	R.C. Sharma &	Business Correspondence & report	Tata MCgraw Hill
	Krishna Mohan	writing	

(EX501) PROGRAMMABLE LOGIC CONTROLLERS (PLC)

1. AIM

1. To introduce students to PLC Hardware and programming concepts

2. COURSE OBJECTIVES / RATIONALE:

The students will able to:

1. To understand working of a PLC based System.

2. Write simple programs using ladder symbols and functional blocks.

3. PRE-REQUISITES:

Students should know

- 1. Working of Digital Circuits like Shift Registers, Counters, ADC and DAC.
- 2. Working of a Relay and Power electronic devices like Diac and Triac.

4. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course code	e &	Peri	ods/V	Veek	Total	Examination Scheme				
course titl	le	(ir	1 hou	rs)	Credits	Theory		Practical		Total
						Mai	rks	Marks		Marks
Programma	ble	L	Т	Р	С	ТН	TM	TW PR/OR		
Logic Contro	llers	3	-	2	5	75 25 25		25 -		125

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Describe the hardware and I/O interface of PLC system.
- 2. Describe the procedures to commission and test PLCs in Industrial Automation Systems.
- 3. Develop and troubleshoot ladder programs for PLCs.
- 4. Design a simple automated system using PLCs.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society,Sust ainability & Environment	Project Management	Life -long Learning	
CO1	2	0	1	0	0	2	2	
CO2	2	2	1	2	2	3	3	
CO3	3	3	3	3	3	3	3	
CO4	3	3	3	3	3	3	3	

$\boldsymbol{6}.$ Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	1
CO2	1	1
CO3	2	2
CO4	2	2

M = Marks Thr = Teaching hours CO = Course Objectives]	
Unit	Μ	Thr	CO
1. PLC HARDWARE	18	12	CO 1
1.1 Introduction: Definition, Features, Advantages, Applications			
1.2 Types of PLC : Single box & Modular, Small, Medium and Large PLC			
1.3 PLC system: General Block diagram, Internal architecture (block diagram): CPU, Buses & Memory.			
1.4 Input and output: Types of I/O signals – Analog, Digital and Discrete			
Types of I/O Connections – Sourcing and Sinking			
Input Units: DC input unit, AC input Unit and Analog input Unit. Output Units: Basic forms of Relay output unit, transistor output unit			
and Triac output unit.			
I/O Addressing: The general format of an I/O address.			
2. PLC Instructions and Functional Blocks	18	12	CO 3 CO 4
2.1 PLC ladder diagram conventions, rules, standard IEC 1131-3 symbols.			
2.2 Data handling instructions – Data movement (MOV), Data comparison (EQUAL, NOT EQUAL, LESS THAN, LESS THAN OR EQUAL, GREATER THAN, GREATER THAN OR EQUAL, MASKED COMPARISON FOR EQUAL, LIMIT TEST)			
2.3 Mathematical instructions(ADD, SUBTRACT, MULTIPLY, DIVIDE, SQUARE ROOT)			
2.4 SET and RESET Instructions			
2.5 Subroutine: call to subroutine, return to main program			
2.6 Shift registers: Introduction, function, (SHIFT LEFT, SHIFT RIGHT, SHIFT 1 BIT AND 4 BIT AT A TIME).			
2.7 Internal Relays: Function of internal relays, Addressing of internal relays, battery backed relays, master control relay.			
3. TIMERS & COUNTERS	12	8	CO 3 CO 4
3.1 Timers: Function and list of applications of On-delay timers, Off- delay timers, Retentive Timers, Non retentive Timers, Pulse timers, Cascaded timers.			

	1	T	
3.2 Timer Parameters: Preset value, Time base, Total time delay,			
Significance of Timer timing and Timer Out.			
3.3 Counters: Function and list of applications of Up and Down			
counters.			
3.4 Counter Parameters: Preset value, Accumulated Value, Clock			
Input and counter Overflow and Underflow indications			
4. PROGRAMMING a PLC	15	8	CO 3 CO 4
4.1 ladder programs to represent logic functions (AND, OR, NOT, NAND, NOR, XOR)			
4.2 ladder programs for switches, latching circuits, multiple outputs and sequenced outputs			
4.3 Ladder programs and functional block diagrams from boolean expressions(POS, SOP)			
4.4 Simple Ladder programs using data handling and mathematical instructions.			
4.5 Simple Ladder programs using internal relay, master control relay and shift register.			
4.6 Simple Ladder programs using timers and counters			
5. DESIGNING SYSTEMS	12	8	CO 2
5.1 Brief overview of steps in systematic designing of a PLC based System.			
5.2 Safety in PLCs – emergency stop relays.			
5.3 Commissioning a PLC – Testing of inputs & outputs, Testing			
Software, and Simulation.			
5.4 Fault finding: Fault detection techniques – timing checks, last output set, replication and expected value checks.			
5.5 Brief overview of System documentation.			

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No	Unit	Number of lectures	Marks
1	PLC HARDWARE	12	18
2	PLC INSTRUCTIONS AND FUNCTIONAL BLOCKS	12	18
3	TIMERS & COUNTERS	08	12
4	PROGRAMMING A PLC	08	15
5	DESIGNING SYSTEMS	08	12
		48	75

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

No	Practicals	Marks
1.	Introduction to the PLC simulation software.	
2.	Compare Specifications of different PLCs	
3.	Ladder programming for logical functions	
4.	Ladder programming for latching functions	
5.	Ladder programming for data manipulation functions	
6.	Ladder programming for mathematical functions	
7.	Ladder programming for shift registers functions	
8.	Ladder programming for internal relay and master control relay functions.	
9.	Ladder programming for timer functions	
10.	Ladder programming for counter functions	
11.	Micro Project (simple Application)	
No	Class room Assignments	Marks
1	At-least 02 assignments	
No	Tutorial Exercise	Marks
	NIL	

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	William Bolton	Programmable Logic Controllers 5 th Edition	ELSEVIER, Newnes. ISBN:978-93-80501-46-8
2	Frank D Petruzella	Programmable Logic Controllers 3 rd Edition	McGraw Hill Higher Education or TMH

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Madhuchhanda Mitra, Samarjit Sen Gupta	PLC & Industrial Automation an introduction 5 th Edition	PENRAM International publishing ISBN:9788187972297
2	John W. Webb, Ronald A. Reis	Programmable Logic Controllers: Principles and Applications 5 th Edition	Prentice Hall of India ISBN :978-8120323087
3	George Batten	Programmable Logic Controllers.	Tata McGraw Hill

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1			
2			

(CC601) INDUSTRIAL ORGANISATION AND MANAGEMENT

1. COURSE OBJECTIVES:

Management is the basic need of any organization. Organization consists of multiple activities which are to be systematically managed for effective output. The course covers various principles related to organization and management. The areas covered are finance, human resource, project management etc. After completion of the course, the student will be acquainted with management and other related aspects so that he/she will be able to apply this knowledge in order to achieve the organizational goals.

2. TEACHING AND EXAMINATION SCHEME

Course Code	P	erio	ls/	Tatal	Examination Scheme				
& Course Title	Week (in hours)			Total Hours	Theory Marks		Practical Marks		Total Marks
CC601 INDUSTRIAL	L	Т	Р	Н	ТН	TM	TW	PR/OR	
ORGANISATION AND MANAGEMENT	3	-	-	3	75	25	-	-	100

3. COURSE OUTCOMES

On successful completion of the course, the student will be able to:

CC601.CO1: Describe types of business organizations.

CC601.CO2: Apply the principles of managing Men, Machines, and Materials in an industry.

CC601.CO3: Evaluate financial status of an industrial organization.

CC601.CO4: Develop problem solving skills in project management.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	0	0	0	0	1	0	1	2
CO2	2	1	1	1	1	2	2	1	3
CO3	3	2	1	2	3	3	2	1	3
CO4	3	3	2	2	2	3	3	2	3

Relationship: Low-1 Medium-2 High-3

M=Marks Thr= Teaching hours CO= Course Outcomes			
Unit	Μ	Thr	CO
1.BUSINESS ORGANIZATION	10	6	CO1
1.1 Types of business organizations: Individual proprietorship,			CO2
Partnership, Joint Stock Companies: Private Ltd and Public Ltd,			
Co-operative societies, Public sector			
1.2 Structure of business organization: Line organization,			
Functional Organisation, Line and staff organization, Project			
organization			
2. BUSINESS MANAGEMENT	16	9	CO1
2.1: Concept of management and administration, management as			CO2
an art and science, evolution and growth of scientific			CO3
management- contribution of F.W Taylor.			
2.2 Basic functions of management: planning, organizing,			
staffing, directing, controlling.			
Other functions: forecasting, coordinating and decision- making.			
2.3 Functions in Industry: Basics of			
Procuring, store- keeping, material handling, production, packing			
and forwarding, marketing and sales, supervision, research and			
development.			
2.4 Supervisory skills required in industry			

	inj ac	/4 0 11	100
3.BASICS OF FINANCE	18	13	CO1
3.1 Sources of finance			CO2
3.2 Cost Concepts: Necessity of costing, elements of cost:			CO3
material, Labour and expense; prime cost, overhead cost, total			CO4
cost, And break- even analysis.			
3.3 Materials management: Inventory control-standard order,			
reserve stock, reorder point, lead time. Economic order quantity,			
ABC Analysis.			
Introduction to Just in time (JIT) system			
3.4 Depreciation: Definition and causes. Methods of calculating			
depreciation charges: Straight Line Method, Diminishing Balance			
Method, Sinking Fund method .(Simple Numericals)			
3.5 Obsolescence- definitions and reasons.			
3.6 Introduction to GST.			
4. HUMAN RESOURCE MANAGEMENT	21	14	CO1
4.1 Functions of Personnel Department: Human resource			CO2
planning, selection and recruitment, training, promotion and			CO3
transfer, welfare of employees.			CO4
4.2 Industrial Relations: Employer-employee relations, trade			
union, settlement of disputes of employees, collective bargaining,			
conciliation, arbitration, grievance handling mechanism.			
4.3 Wages and Incentives: Factors influencing wages, types of			
wage plans – time rate and piece rate, Incentive – objectives and			
types, individual and group incentive plan, characteristics of a			
good wage or incentive plan, difference between incentive and			
wage.			
4.4 Industrial Acts:			
Introduction to the following Industrial Acts:			
Industrial Disputes Act 1947/1956;			
The Indian Factories Act 1948			
The Workmen's Compensation Act 1923			
5.PROJECT MANAGEMENT	10	6	CO1
5.1 Introduction to Project Management			CO2
5.2 Network Analysis (Introduction to basic concepts with simple			CO3
Numericals)			CO4
CPM- Critical Path Method: Definition, network diagrams,			
critical path, advantages			
PERT- Programme Evaluation and Review Technique:			
Definition, network diagrams, advantages.			
Comparison of PERT and CPM.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number of	Marks
No		lectures	
1	Business Organization	6	10
2	Business Management	9	16
3	Basics of Finance	13	18
4	Human Resource Management	14	21
5	Project Management	6	10
		48	75
	Total		

8. LEARNING RESOURCESText

Books

S. No	Author	Title of Book	Publisher
1	O.P. Khanna	Industrial Engineering and Management	Dhanpat Rai Publications
2	T. R. Banga ,S.C. Sharma	Industrial Organisation and Engineering Economics	Khanna Publishers
3	Awate, Chunawala, Patel, Bhandarkar, Sriniwasan	Industrial Organisation and Management	Vrinda Publication
4	Martand Telsang	Industrial Engineering and Production Management	S.Chand & Company Ltd

(EX612) Autonomous Robots

1. AIM

Robotics is a fast – Growing field whose definition has been evolving over time, along with the field itself. Other than industrial applications, Robots are increasingly being used in newer field of application like medicine, space, exploration, and hazardous environment, military and domestic use. There is huge demand for innovation in autonomous robots in new areas like virtual reality, cars, personal care for disabled people. Robots are likely to be common basic necessity as human try to survive in a harsher future with security treats, depleted natural recourses and global climatic changes

2. COURSE OBJECTIVES / RATIONALE:

- To introduce students to Arduino Interactive Development IDE
- To enable them to understand the working and various types of Arduino board
- To help them build innovative projects using Arduino and IOT
- To introduce students to Internet of Things

3. PRE-REQUISITES:

Students should know

- programming concepts
- processing unit

4. TEACHING AND EXAMINATION SCHEME

Course Code	Per	Periods/		Total	Examination Scheme					
& Course Title	Week (In Hours)		Credit	Theory Marks		Practical Marks		Total Marks		
EX612	т	т	Р		тн	TM		PR/O		
Autonomous	L			C	IH		TW	R		
Robotics	3	-	2	5	75	25	25	25	150	

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the concept of Arduino processor and IOT
- 2. Apply the basic protocol and working principle of interfacing Modules.

3. Analyze various application program for wide range of Arduino processors

4. Design, debug and troubleshoot Arduino/IOT based project

$\mathbf{6}.$ Mapping Course Outcomes with Program Outcomes

Relationship . 1. Shght (Low) 2. Woderate (Wedrath) 5. Substantial (High)								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
	Basic & Disciplin e Specific	Problem Analysis	Design and Devlopm ent of	Engg. Tools, Experim entatn&	Engg. Practices for Society,S ustainabi lity&	Project Manage ment	Life - long Learning	
CO1	3	2	1	0	0	0	2	
CO2	2	3	2	1	2	0	3	
CO3	0	3	3	2	3	0	3	
CO4	0	3	3	3	3	3	3	

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PSO1	PSO2
CO1	3	1
CO2	3	1
CO3	3	2
CO4	3	2

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	T hr	CO
1 Autonomous Robotics			
 1.1 definition of Robot, industrial Robot, Autonomous Robot, Application 1.2 Autonomous Robot Types: wheeled and Legged, types of Stability: dynamic and Static 1.3 Control Components of AR: wired control, IR control, Radio Con ZigBee 1.4 Sensor Navigation: Bump Switch, IR Sensor, Ultrasonic Range Fin Accelerometer, GPS module, GPRS module 1.5 Block Diagram and Working Principle of Servo Motor and DC motor 	trol, der,	12	CO1, CO2
2 Introduction to Arduino Programming	14	8	CO3
 2.1 Block diagram, input and output pins of Arduino Uno developm Board 2.2 Basic Commands of Arduino Programming Void Setup (), Void Loop(), pinMode(), 2.3 basic Commands for Serial Communication, analog Input/Output, Dig Input/output, delay commands 			

3 Sensor module interfacing with Arduino Uno (interfacing diagram and Arduino sketch for the following)	18	12	CO2, CO3
3.1 motion detector: tilt sensor, PIR			005
3.2 light detector:LDR			
3.3 Distance Measurement Ultrasonic Sensor, IR sensor			
3.4 Vibration detector:Piezo sensor			
3.5 sound detector:Microphone			
3.6 Temperature Sensor:LM35			
3.7 Rotary Encoder			
3.8 GPS			
[Note: Knowledge of interfacing any of above Sensor module with Arduino			
is of LEVEL 2 and writing Arduino sketch for such interfacing is of	•		
LEVEL3]			
4 Motor control with Arduino Uno (interfacing diagram and Arduino	13	8	CO2,
sketch for the following)			CO3,
4.1 controlling position of servo motor			CO4
4.2 Controlling direction of DC motor using transistor H-bridge			
4.3 Controlling direction of DC motor using IC: Movements for two wheeled			
Robot: move forward, move back ward, stop, move left, move righ(LEVEL			
3)			
5 Internet Of Things (IOT)	12	8	CO1,
5.1 Introduction to IoT Defining IoT, Characteristics of IoT, Physical design			CO2,
of IoT, Logical design of IoT, Functional blocks of IoT,			CO3,
Communication models, IOT Module (<i>LEVEL 1</i>)			CO4
5.2 interfacing IOT module to Arduino Board(<i>LEVEL 2</i>)			
5.3 Arduino based IOT Applications(<i>LEVEL 4</i>)			
Total	75	48	-

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

UnitNo	Unit	Number of	Marks
		lectures	
1	Autonomous Robotics	12	18
2	Introduction to Arduino Programming	8	14
3	Sensor module interfacing with Arduino Uno	12	18
4	Motor control with Arduino Uno	8	13
5	Internet Of Things (IOT)	8	12
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Interfacing and Programming of Arduino with motion detector: tilt sensor,	2
	PIR, Gyroscope, Accelerometer (any one)	
2	Interfacing and Programming of Arduino with LDR	2
3	Interfacing and Programming of Arduino with ultrasonic Sensor/IR sensor	2
4	Interfacing and Programming of Arduino with Piezo Sensor	2
5	Interfacing and Programming of Arduino with microphone	2
6	Interfacing and Programming of Arduino with LM35	2
7	Interfacing and Programming of Arduino with servo motor	2
8	Interfacing and Programming of Arduino with DC motor	2
9	Programming Arduino for two wheeled Robot interfaced to Arduino for	4
	following movement like	
	Move forward, Move back ward, stop, move left, move right	
10	Mini Projects: Line Follower, obstacle Avoider, etc.	5
	Total	
No	Class room Assignments	Marks
1	At-least 02 assignments	
••••		
No	Tutorial Exercise	Marks
	NIL	
•••	Total	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Massimo Banzi	Getting started with Arduino	Second Edition, O'reilly
2	Maja J. Mataric	Robotics Primer	Latest
3	Brian Evans	Beginning Arduino Programming	A Press Publishers, Recent Edition
4	Vijay Madisetti, ArshdeepBahga,	"Internet of Things: A Hands-On Approach"	Recent edition

(CC503) RENEWABLE ENERGY SYSTEMS AND ENERGY MANAGEMENT

1. COURSE OBJECTIVES:

To compare the different conventional energy sources with renewable energy sources. This course will also provide valuable insight on different energy conservation devices and its applications in the real world. It will also help to conduct energy audits using energy management techniques for energy conservation.

2. TEACHING AND EXAMINATION SCHEME

Semester									
Course code &	Periods/Week		Total		Exan	nination	n Scheme		
course title	(iı	n hou	rs)	Credits	Theory		Practical		Total
				Marks		rks	Marks		Marks
		-						•	
(CC503)	L	Т	P	C	TH	TM	TW	PR/OR	
Renewable									
Energy Systems	3	-	2	5	75	25	25	25	150
And Energy									
Management									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CO1: Understand the various renewable energy sources and concepts of Energy management. CO2: Describe the characteristics of various renewable energy sources and types of Energy Audits.CO3: Design elementary Solar and wind energy systems

CO4: Apply the knowledge of energy conservation and energy management techniquesto conduct energy audits.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	0	0	0	2	0	2	1	1
CO2	2	1	2	0	2	2	2	2	2
CO3	2	2	2	2	2	1	2	2	3
CO4	2	2	2	2	2	2	2	2	3

Relationship: Low-1 Medium-2 High-3

M = Marks Thr = Teaching hours]	
Unit	Μ	Thr	CO
Unit 1 INTRODUCTION TO RENEWABLE ENERGY SOURCES	10	06	
1.1 Energy Scenario in India			
1.2 Need of Renewable energy sources.			
1.3 Types of Renewable energy sources			CO1
- Basic concepts of Solar energy, Wind Energy, Tidal energy, Biomass Energy,			
Fuel Cell			
Unit 2 SOLAR ENERGY SYSTEMS	16	10	
Solar Energy			
2.1 Principle of conversion of solar energy into heat and electricity			
2.2 Solar Radiation: Solar Radiations at earth's surface			CO1
2.3 Solar Radiation Geometry: Declination angle, hour angle, altitude angle,			CO1 CO2
incident angle, zenith angle, solar azimuth angle			CO2
2.4 Characteristics of PV cell and concept of MPPT			000
2.5 Construction and working of typical flat plate collector and solar			
concentrating collectors and their applications, advantages and limitations			
2.6 Space heating and cooling.			
2.7 Solar distillation, Solar cooking and furnace.			
Unit 3 WIND ENERGY SYSTEMS	16	10	
3.1 Basic Principle of wind energy conversion.			
3.2 Advantages and limitations of wind energy conversion.			COL
3.3 Classification of wind mills			CO1 CO2
3.4 Construction and working of horizontal and vertical axis wind mills, their comparison			CO2 CO3
3.5 Main considerations in selecting a site for wind mills.			
3.6 Wind turbine Efficiency, Wind turbine control parameters- Yaw angle,			
Pitch angle, hub height, Solidity			
Unit 4 APPLICATIONS OF SOLAR AND WIND ENERGY SYSTEMS	18	12	
4.1 PV system for street lights			
4.2 Design of PV system for domestic load.			CO2
4.3 PV water pumping system			CO3
4.4Design of household thermal heating system			
4.5Design of micro wind turbine for domestic load.			
Unit 5 ENERGY MANAGEMENT	15	10	
5.1 Energy scenario in various sectors and Indian economy		-	
5.2 Need and importance of energy conservation and management			
5.3 Principles of energy conservation.			CO4
5.4 Concept of Energy audit		1	
5.5 Types of Energy Audit		1	
5.6 Energy Conservation – Case study of Domestic system			
5.7Energy Conservation – Case study of Industrial system			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction To Energy Sources	06	10
2	Solar Energy Systems	10	16
3	Wind Energy Systems	10	16
4	Applications of Solar and Wind energy systems	12	18
5	Energy Management	10	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Collect information about Indian energy market and prepare a report.	
2.	Study the construction and working of photo voltaic cell.	
3.	Study the construction, working of a solar cooker.	
4.	V-I, P-V Characteristics of Photovoltaic panel	
5.	Case Study on a nearest wind farm.	
6.	Visit to plant of solar heating system for hotel/hostel/railway station etc.	
	and prepare a report.	
7.	Perform energy audit for workshop/Office/Home/SSI unit.	
8.	Study of various waste heat recovery devices.	
	Total	25

9. LEARNING

RESOURCES Text Books

S. No.	Author	Title of Books	Publishers
1	DrB.H.Khan	Non-conventional	Tata McGraw Hill
2	S. P. Sukhatme	Energy Resources	Tata McGraw Hill
3	Arrora	Solar energy	Dhanpat Rai & co.
4	Domkundwar	Power plant engineering	Wiley Press
5	Gilbert M	Renewable and Efficient Electric	Wiley Interscience, New
	Masters	Power Systems	Jersey, 2004
6	Chetan Singh	Solar Photovoltaics;	PHI
	Solanki	Fundamentals, Technologies and	
		applications	

(EX618) WEB DESIGNING TECHNOLOGIES

1. AIM

1. To introduce students to various Web designing technologies used and protocols used in Internet

- 2. To enable students to design Web pages using HTML
- 3. To train students to develop and deploy Web sites implemented having a front-end, back-

endprocessing and a database

2. COURSE OBJECTIVES:

The students will able to:

1. Understand the basic working of the Internet and be aware of various technologies used in Webdesigning

2. Design and develop simple websites by implementing suitable user interface and back-end processing

3. PRE-REQUISITES:

Students should know

- 1. Basics of computer hardware and simple softwares
- 2. Surfing the Internet

4. TEACHING AND EXAMINATION SCHEME

Semester	V									
Course cod	Periods/Week			Total	Examination Scheme					
course title		(iı	n hou	rs)	Credits	The	ory	Pra	actical	Total
						Mai	rks	Μ	larks	Marks
EX618	Web	L	Т	Р	С	TH	TM	TW	PR/OR	
Designing		3	-	2	5	75	25	25	25	150
Technologies	5									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain various technologies used in website designing and protocols used on the Internet
- 2. Build static and dynamic web pages using HTML and apply front-end validation using Javascript
- 3. Analyze simple web pages which include back-end processing using php
- 4. Evaluate a simple database and design Web pages to access the database

6. Mapping Course Outcomes with Program Outcomes							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime ntatn&	Engg. Practices for Society,Su stainabilit v	Project Managem ent	Life -long Learning
CO1	3	1	0	0	0	0	2
CO2	0	1	1	0	0	3	2
CO3	0	0	1	0	0	3	2
CO4	2	1	1	1	2	3	2

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	1
CO2	1	2
CO3	1	3
CO4	1	3

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	CO
1 INTRODUCTION TO INTERNET, PROTOCOLS AND WEB	21	14	CO1
TECHNOLOGIES			
1.1 INTRODUCTION TO THE INTERNET			
IP addresses, domain names, Working of Web browsers and Web			
servers, URLs			
1.2 INTERNET PROTOCOLS			
TCP/IP basics, Basic working and features of the following protocols			
- IP protocol (including IPV4 datagram format), address resolution			
protocol (ARP), reverse address resolution protocol (RARP), Internet			
control message protocol (ICMP), TCP, DNS, SMTP, POP,			
hypertext transfer protocol (http).			
1.3 WEB TECHNOLOGIES			
Web pages (types and issues), Concept of a tier, Comparison of			
Microsoft and Java technologies.			
Static web pages, plug-ins.			
Need for dynamic web pages, overview of dynamic web pages and			
technologies.			
Active web pages – Introduction and advantages.			
Different Web browsers, programming languages used in Web page			
development (front-end and back-end), databases, frameworks and data			
formats (LISTING ONLY)			
2 HTML	18	10	CO2

2.1 HYPERTEXT MARKUP LANGUAGE			
Basic syntax, basic text formatting, images, hypertext links, lists, tables,			
frames, forms, creating simple HTML pages using these tags and their			
attributes			
3 BASICS OF JAVASCRIPT	12	08	CO2
3.1 INTRODUCTION TO JAVASCRIPT			
Javascript uses, Javascript objects, reserved words.			
3.2 PROGRAMMING USING JAVASCRIPT			
Javascript syntax, primitives, operators, expressions, screen output,			
control statements, arrays, functions.			
3.3 JAVASCRIPT OBJECTS AND EVENT HANDLERS			
Core Javascript built-in objects and their methods and properties			
(Document object, Date object, Math object, String object, Array object),			
events and event handlers			
4 INTRODUCTION TO PHP	12	08	CO3
4.1 PHP BASICS			
Overview of php, general syntax, primitives			
4.2 PROGRAMMING USING PHP			
Operations and expressions, output, control statements, arrays, functions,			
form handling, cookies, session tracking, simple programs			
5 WEB SERVERS AND DATABASE ACCESS	12	08	CO4
5.1 WEB SERVERS			
Web server operation, general server characteristics.			
5.2 RELATIONAL DATABASE			
Introduction to relational databases, Introduction to Structured Query			
language (SQL) - CREATE, INSERT, UPDATE, DELETE commands,			
the MySQL database system, database access with PHP and MySQL,			
writing Web pages to process validated data from HTML forms using			
php and retrieve as well as store records in mysql database			
Total	75	48	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No	Unit	Number of lectures	Marks
1	INTRODUCTION TO INTERNET, PROTOCOLS AND WEB TECHNOLOGIES	14	21
2	HTML	10	18
3	BASICS OF JAVASCRIPT	8	12
4	INTRODUCTION TO PHP	8	12
5	WEB SERVERS AND DATABASE ACCESS	8	12
	Total	48	75

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

No	Practical	Marks
1.	Study the various features available in a Web browser	
1.	Create a simple website (minimum 8 webpages) on the local server using	
	HTML, PHP and MySQL which implements the following:	
2.	Write HTML codes for text formatting and images	
3.	Write HTML code to create lists and tables	
4.	Write HTML code using hyperlinks and frames	
5.	Write HTML code using forms	
б.	Write Javascript code to perform form validation	
7.	Write php code to process data from an HTML form	
8.	Configure apache Web server and php and create a simple MySQL	
	database	
9.	Write HTML and PHP code to process data from a MySQL database	
	Total	
No	Class room Assignments	Marks
1	At-least 02 assignments	
No	Tutorial Exercise	Marks
	NIL	

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

11. LEARNING RESOURCES

Text Books

S. No.	Author	AuthorTitle of BooksI					
1	Robert W.	Programming the World Wide Web	Pearson Education				
	Sebesta						
2	Achyut	Web Technologies	Tata McGraw-Hill				
	Godbole and		Publishing Company				
	Atul Kahate		Limited				
3	C. Xavier	Web Technology and design	New Age				
4	Laura Lemay	Mastering HTML,CSS & Javascript	BPB Publications				
		web publishing					
5	Danny Goodman	Javascript bible	Wiley				
6	Mike McGrath	PHP and mysql	McGraw Hill				
			Education				

Reference	Reference Books for further study								
S. No.	Author	or Title of Books							
1	Deven Shah	Advanced Internet technology	Dreamtech Press						
2	Ivan Bayross	Web enabled commercial application development using HTML, Javascipt, DHTML and PHP	Paperback ISBN: 9788183330084						
3	Kogent Learning SolutionsInc	Internet Technologies	Dreamtech Press						

Website resources

https://differential.com/insights/14-technologies-every-web-developer-should-be-able-to-explain/
http://www.html.net
http://www.w3schools.com
http://www.tutorialpoint.com

(EX613) Advanced Microcontroller

1. AIM:

To understand advanced microcontroller concepts, interface ARM microcontroller to external hardwareand program ARM-based systems for various applications

2. COURSE OBJECTIVES / RATIONALE:

Students will be able to:

- 1. Understand advanced microcontroller concepts
- 2. Interface ARM microcontroller to external hardware
- 3. Program ARM-based systems using assembly and embedded C languages

3. PRE-REQUISITES:

Students should have the knowledge of:

- 1. Digital electronics and number systems
- 2. Basic microcontrollers
- 3. Computer programming and assembly language programming

Semester	V									
Course code & Periods/We		Veek	Total	Examination Scheme						
course title		(iı	n hou	rs)	Credits	s Theory Practical Marks Marks			Total Marks	
EX617 Adva	inced	L	Т	Р	С	ТН	TM	TW	PR/OR	
Microcontr	oller	3	-	2	5	75	25	25	25	150

4. TEACHING AND EXAMINATION SCHEME

5. COURSE OUTCOMES:

On successful completion of the course, students will be able to:

- 1. Recall and explain the features of ARM7TDMI microcontroller
- 2. Compare/contrast and select appropriate interface for a given application
- 3. Develop, execute and debug assembly language and embedded C programs for various applications
- 4. Interface ARM7TDMI microcontroller with hardware for various applications

0. Mapping	Course Ou	tcomes	with Progi	ram Outcon	les		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime ntatn&	Engg. Practices for Society,Su stainabilit v	Project Managem ent	Life -long Learning
CO1	2	3	3	0	0	0	3
CO2	0	3	3	0	0	0	3
CO3	0	3	3	3	3	3	3
CO4	2	3	3	3	3	3	3

6. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

Mapping Course Outcomes with Program Specific Outcomes

	PSO1	PSO2
CO1	3	3
CO2	1	3
CO3	0	3
CO4	3	3

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Th	CO
		r	
1 Introduction to ARM7TDMI	12	7	CO1
1.1 ARM7TDMI architecture, block diagram, functional diagram			
1.2 ARM7TDMI register set, 32-bit CPU registers, CPSR and SPSR			
registers			
1.3 ARM7TDMI three-stage pipeline			
1.4 Memory map and memory interfacing, implementation of stack			
1.5 AMBA overview			
2 ARM7TDMI on-chip peripherals	18	12	CO1
2.1 Timer – features, pin and register description, timer-handling			
2.2 Serial port – configuration, interfacing PC with microcontroller,			
UART0 and UART1-handling			
2.3 Interrupt – IRQ, FIQ, ISR and interrupt-handling			
2.4 ADC – built-in ADC, interfacing external device to ADC			
2.5 PWM – register description, application			
2.6 Real time clock – RTC features, RTC register description, RTC			
interrupts			
2.7 Flash – flash memory system			
2.8 Watchdog timer			
3 Communication protocols for interfacing	10	6	CO2

3.1 I2C interface – features, architecture, pin and register description,			
applications			
3.2 SPI interface – features, architecture, pin and register description,			
applications			
3.3 Introduction to CAN interface			
4 ARM7TDMI instruction set and programming	20	13	CO3
(Students to be examined on assembly language programs that can include a combination of any instructions.			
Minimum instruction set should be provided to students during the			
examination)			
4.1 32-bit ARM instruction set			
4.2 16-bit THUMB instruction set			
4.3 Simple programs using different types of ARM instructions			
5 Interfacing ports to external devices	15	10	CO4
5.1 Hardware interfacing to output devices and programming - LED, seven-segment LED display, LCD, motor			
5.2 Hardware interfacing to input devices and programming - Switches,			
matrix keypad			
5.3 Hardware interfacing to sensors and programming - IR, temperature			
sensors			
Total	75	48	

8. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies, laboratory practical, etc.

Unit No	Unit	Number of lectures	Marks
1	Introduction to ARM7TDMI	7	12
2	ARM7TDMI on-chip peripherals	12	18
3	Communication protocols for interfacing	6	10
4	ARM7TDMI instruction set and programming	13	20
5	Interfacing ports to external devices	10	15
	Total	48	75

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Minimum eight to be performed	
1.	Program to add n binary numbers	
2.	Programming of timer for 8-bit PWM Generation	
3.	Programming of timer for variable frequency square wave generation	

4.	Programming of timer for frequency measurement and display on LCD	
5.	Programming of on-chip ADC	
6.	Programming of SPI port for interfacing with ADC MCP3304	
7.	Programming of SPI port for interfacing with DAC MCP4822	
8.	Programming of GPIO port for LED flashing	
9.	Programming of GPIO port for key interface	
10.	Programming of timer for accurate delays	
11.	Programming of UART for interfacing with PC	
	Total	25
No	Class room Assignments	Marks
	At-least 02 assignments	
No	Tutorial Exercise	Marks
	NIL	
	Total	

11. Learning resources

Text Books

S. No.	Author	Title of Books	Publishers
1		ARM System Developers Guide,	ELSEVIER
	Dominic SYMES	Designing and Optimizing System	
	and Chris WRIGHT	Software	
2	Steve Furber	ARM System-on-Chip	PEARSON
		Architecture, Second Edition	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	William Stallings	Operating Systems	Pearson

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1			
2			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1		Manuals and Technical	
		Documents from the ARM Inc.	
		web site	

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			
2			

AUDIT COURSE (AC101) ESSENCE OF INDIAN KNOWLEDGE AND TRADITION

1. COURSE OBJECTIVES:

This course aims at imparting basic principles of thought process, reasoning and inferencing by human being. Sustainability is at the core of Indian Traditional Knowledge Systems connecting society and nature. Holistic life style of Yogis, science and wisdom capsules in Sanskrit literature are also important in modern society with rapid technological advancements and societal disruptions. The course thus focuses on introduction to Indian Knowledge System, Indian perspective of modern scientific world- view, basic principles of Yoga and holistic health care system.

2. TEACHING AND EXAMINATION SCHEME

Semester	V									
Course code &		Periods/Week		Total	Examination Scheme					
course title		(ir	n hou	rs)	Hours	Th	eory	Pra	actical	Total
						Ma	arks	Ν	larks	Marks
(AC101) Essence	of	L	Т	P	H	TH	TM	TW	PR/OR	
Indian Knowled	ge	2	-	-	2	-	-	-	-	-
and Tradition										

Course Content:

Basic Structure of Indian Knowledge System:

(i) तेब (ii) उपतेब(आयुर्वेब धनुर्वेब गन्धर्वतेब न्थापत्यतेब) (iii) तेबांग (शिक्षा कल्प निरूक्त प्याकरण

ज्योतिष छंढ़) iv) उपांग (धर्मज्ञाञ्त्र मिमांभा पुराण तर्कज्ञाञ्त्र)

۲ Modern Science and Indian Knowledge System

- Yoga and Holistic Health care
- ۲ Case Studies.

S. No.	Title of Book	Author	Publication
1.	Cultural Heritage of	V.	Bharatiya Vidya Bhavan,
	India-	Sivaramakrishna	Mumbai,
	Course Material		5th Edition, 2014
2.	Modern Physics and	Swami	Bharatiya Vidya Bhavan
	Vedant	Jitatmanand	
3.	The wave of Life	Fritzof Capra	
4.	Tao of Physics	Fritzof Capra	
5.	Tarkasangraha of Annam	V N Jha	Chinmay Foundation,
	Bhatta, Inernational		Velliarnad,
			Amakuam

	Science of Consciousness Psychotherapy and Yoga Practices	RN Jha	Vidyanidhi 2016	Prakasham,	Delhi,	
--	---	--------	--------------------	------------	--------	--

(EX604) Satellite and Optical Fiber Communication

1. AIM

1. To introduce students to Optic Fiber Communication and Satellite Communication which areleading technologies and are revolutionizing the world of Telecommunication.

2. To help students understand the principle of propagation mechanism used in Optical FiberCommunication and Satellite Communication for transmission of data.

2. COURSE OBJECTIVES:

The students will able to:

To understand how we have increased our ability to transmit more information, more quickly and over longer distances using optical fiber and satellite communication as compared to the older technology of transmition.

3. PRE-REQUISITES:

Students should know

- 1. Basic Communication Engineering.
- 2. Fundamentals of ray optics.
- 3. Basic concepts of multiplexing and demultiplexing

4. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Course code & Periods/		ds/We	Veek Total		Examination Scheme					
course title		(in hours)		Credits	Credits Theory Marks		Practical Marks		Total Marks	
Satellite	and	L	Т	P	С	TH	TM	TW	PR/OR	
Optical Communicat	fiber ion	3	-	2	5	75	25		-	100

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

1. Understand the different concepts used in Optical Fiber Communication and Satellite Communication system.

2. Apply the knowledge of fundamentals related to satellite communication to explore the various subsystems under it.

3. Analyze the structure and features of various components of optical fiber communication system.

4. Compare and classify the various multiplexing techniques used in Satellite Communication.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	3	4	1	2	3	2	3
CO2	3	0	0	0	2	2	3
CO3	3	2	1	2	2	2	3
CO4	3	0	0	0	2	2	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	3
CO2	2	2
CO3	2	2
CO4	2	2

M = Marks Thr = Teaching hours CO = Course Outcomes]	
Unit	Μ	Thr	CO
1. Introduction to Optical fiber	21	15	
1.1 Need of fiber optical communication, frequency's used, advantages and Stating of applications.			
1.2 Block diagram of optical communication system and structure of a optical fiber.			CO1
1.3 Mechanism of signal transmission through an optical fiber - concept of total internal reflection, Types and path of light through optical fibers: multimode and monomode fibers, step index and graded index fibers. Differentiate between the above modes of the fiber.			&CO 3

	1	1	
1.5 Concept of acceptance angle, numerical aperture, cone of acceptance, relation between numerical aperture and acceptance angle(no derivation). Simple numerical problems to calculate acceptance angle and			
numerical aperture for a single mode fiber.			
1.6 Optical fiber fabrication wares about deposition techniques OVDO			_
1.6 Optical fiber fabrication- vapor phase deposition techniques: OVPO. fiber drawing apparatus			
1.7 Attenuation in optical fibers (fiber loss): Absorption losses,			
Scattering losses, Bending losses.			
Signal distortion in optical fiber: dispersion (concept only)			
2 Ontirol Sources and Detectors	18	12	_
2. Optical Sources and Detectors	10	12	
2.1 Light sources : characteristics of light source used in optical communication, principle of operation of LED.			
2.2 Concept of Double Heterostructure, Type of LED structure used and its brief description(SELED), principle of operation of injection laser diode, structure of laser diode and its brief description (fabry perot resonator cavity type) ,comparison of LED and ILD.			CO1 &CO
2.3 Detectors: characteristics of photo detectors used in optical communication; PIN diode and avalanche photo diode(APD), their brief comparison.			- 3
2.4 Power launching : concept of source to fiber power launching(no derivation).			
2.5 Connectors and splicing: fiber alignment and joint losses, splicing, types of splices, characteristics and types of connectors used.			
3.Introduction to satellite communication.	06	05	
3.1 Frequency bands used in satellite communication;			
3.2 Block diagram of satellite communication and Applications of satellite(to list)			CO1 &CO
3.3 Classification of satellite orbits and features: LEO,MEO,GEO,HEO			2
3.4 Concept of satellite uplink and downlink frequencies;			
3.5 Geosynchronous orbit and its features.			
	10	10	
4.Satellite subsystems.	18	10	

 4.1 Major satellite subsystems: Power subsystem(only concept); Telemetry, tracking and command (with block diag) Attitude and orbit control system(only concept) Communication subsystem : single channel, multi channel earth station transmitter and receiver(with block diagram), Earth station transreceiver. 4.2 Block diagram of typical single and multi channel satellite transponder 			CO1 &CO 2
5. Multiple access techniques in satellite communication.	12	06	
5.1 Need of multiple access			CO1
5.2 Types of multiple access			&CO
5.3 Concept of FDMA, TDMA, CDMA.			4
5.4 Advantages, disadvantages and comparison of the above multiple			1
access techniques.			
	75	48	1

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. 5	SPECIFICATION	TABLE	FOR	THEORY/	MACRO-LESSON	PLAN
------	---------------	-------	-----	---------	--------------	------

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Introduction to Optical fiber	15	21
2	Optical sources and detectors	12	18
3	Introduction to satellite communication	05	06
4	Satellite subsystems	10	18
5	Multiple access techniques in satellite communication	06	12
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Identify diff types of fibers ,(single multi mode plastic composite glass)	
2.	To identify diff types of optical sources	
3.	To identify diff types of optical detectors	
4	Setting up of fiber analog link	
5.	Setting up to optic digital link	
6.	Compare of various losses in optical fibers	
7.	Study of bending loss	

8.	To measure and calculate numerical aperture of optical fiber	
9.	Field visit to OF industry and satellite station	
	Total	25
No	Class room Assignments	Marks
	At-least 02 assignments	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers			
1	G.Keiser	Optical Fiber communication 4 th edition	Mc.Grawhill inc,USA,1991.			
2	D.C.Aggarwal	Sattelite Communication 4 th edition	Khanna publishers Delhi.			
3	RP Singh SD Sapre	Communication system 2 nd edition	Tata McGraw-hill publishing			
4	Wayne Tomasi	Advanced electronic communication systems 6 th edition	Pearson education.			

Reference Books for further study

S. No.	Author	Title of Books	Publishers		
1	R.Gagliardi and S.Karp	Optical Communications	john wiley & sons Inc,USA,1995.		
2	G.D.Gordon and W.L.Morgan	Principles of communication Satellite	john wiley & sons Inc,USA,1993.		
3	T.Pratt and C.W.Bostian	Satellite communications	john wiley & sons Inc,USA,1995.		

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1			
2			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1			
2			

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			
2			

(CC 502) ESSENTIALS OF ENTREPRENEURSHIP DEVELOPMENT

1. COURSE OBJECTIVES:

Today Entrepreneurship is given importance by the government to bring the youth of our country to overcome the problem of unemployment and bring them in the main stream of global business to strengthen Indian economy by Make in India philosophy. Government has announced various financial schemes for young youth and women to support them for setting up an enterprise. To fulfill this, youth are to be prepared for setting an enterprise. The students undergoing this course will be able to develop entrepreneurial traits and confidence within themselves and choose entrepreneurship as a career to brighten their future.

2. TEACHING AND EXAMINATION SCHEME

Course Code	Periods/ Week (In Hours)		Total Credits	Examination Scheme					
& Course Title				Theory Marks		Practical Marks		Total Marks	
(CC502) ESSENTIALS OF	L	Т	Р	С	-	-	PR/OR	TW	
ENTREPRE- NEURSHIP DEVELOPMENT	-	-	2	2	_	-	-	25	25

3. COURSE OUTCOMES:

CC502.CO1: Recognize the type of entrepreneur and enterprises. CC502.CO2: Describe basic financial & legal aspects of business. CC502.CO3: Conceptualize a business idea.

CC502.CO4: Develop the project report for new enterprise.
<u> </u>									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	0	0	0	2	3	2	1	2
CO2	2	0	0	0	0	3	2	1	2
CO3	0	1	2	0	0	0	2	1	2
CO4	3	2	2	0	2	0	2	2	2

4. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS

M=Marks	Phr= Practical hours	CO – Course Outcomes				
Unit			М	Phr	CO	
1. INDIAN B	USINESS ENVIRONME	NT				
		· · · · · · · · · · · · · · · · · · ·				
	n to Entrepreneurship Deve	elopment (EDP)		4	CO1	
	Brief details of following terms : idia GDP, IIP data, Govt. business policies, Environmental policy,					
India GDP, IIP data, Govt. business policies, Environmental policy, Effects of global policies, Anti-dumping duty, Effects of national budget						
on start-ups ar	1 1 0	duty, Effects of hational budget				
2. VARIOUS	TYPES OF BUSINESSE	s				
	s of following businesses:				CO1	
•	•	sonal and Non-seasonal business,		6		
		pt base business, Commodity and				
	etween Subsidiary and Ass	siness, b2b and b2c business,				
1. Difference t	between Subsidiary and Ass	sociate company				
3. SELECTIO	ON OF BUSINESS					
3.1 Types of S	ectors, Steps in sectoral ana	alysis, factors to pick up a Sector,			CO1	
Data collection				4	CO2	
	gies: Sector rotation, Gross					
-	ad Outline of balance sheet	t, profit-loss statement, cash flow				
statement.						
consolidation.		i) Market growth ii) Sector				
	ls of following:					
		Pricing power, Debt, working				
-	_	sh conversion cycle, Companies				
with peer grou		, , , , , , , , , ,				
1 0						

4 SETTING UP OF BUSINESS		
 4.1 Various Govt depts. and organization supporting business ideas. 4.2 Methods to raise capital (difference between Banks and NBFC). 4.3Factors in machine, material, manpower procurement, advertising, product specialty, 4.4 Micro, Small and Medium Enterprises (MSME), Govt support for MSME, Private Limited and Public Limited Enterprises, 4.5 Goods & Service Tax(GST), Registering for GST and go ahead, 4.6Various income tax slabs, 4.7Application for various utility connections, various permissions required to set up business. 	10	CO1 CO2 CO3
5. EXPANSION OF BUSINESS		
 5.1Types of investors: angel investors, venture capitalist, promoters. 5.2Terminology: 5.2.1 EPS, EPS growth, P/E ratio, 5.2.2 Market capital, paid up capital, authorized share capital, 5.2.3Corporate governance, Related party transactions, business insiders, assets and inventory turnover, break even analysis, brown field and green field expansion. 5.3 Listing start up on stock exchange &Govt support. 5.4 Business report writing, Reading of Red Herring prospectus 	8	CO1 CO2 CO3 CO4
Total	32	

6. COURSE DELIVERY:

Videos / Lectures/ Practicals /Expert lectures / Industry visits/ documentaries/moviesSuggested expert talk on

- various Govt schemes
- GST
- Financial literacy
- Any relevant topic

7. SPECIFICATION TABLE FOR PRACTICALS

Unit No.	Торіс	Teaching Hours/ Semester
1	Indian business environment	4
2	various types of businesses	6
3	selection of business	9
4	Setting up of business	9
5	Expansion of business	4
	TOTAL	32

No	Classroom Assignments	Marks
1.	Prepare a Case Study on leading enterprise or small-scale unit	6
2.	Prepare a report on various government schemes for startup.	4
3.	Prepare SWOT analysis for a new business idea.	5
4.	Prepare Project Report for a new business idea.	10
	OR	
1.	Preparing a project report on basis of draft Red Herring prospectus	25

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICAL HOURS

9. LEARNING RESOURCES

S.No.	Author	Title of Books	Publisher		
1.	Sharadjawadekar, shobhadodlani,	Business entrepreneurship	Suvicharprakashanmandalpune,		
2.	S.S. Khanna	Entrepreneurship development	S. Chand & Co. Ltd, New Delhi,		
3.	Vasant Desai	Management of small-Scale Industry in India	Himalaya Publishing House		
4.	DilipSarwate	Entrepreneurial development Concepts and practices	Everest Publication House, Pune		
5.	CB Gupta and P Srinivasan	Entrepreneurship Development	S. Chand and Sons, New Delhi		

https://ncert.nic.in/ncerts/l/leac203.

<u>pdf</u>

https://ncert.nic.in/ncerts/l/leac204. pdf

https://www.wirc-icai.org/images/publication/IND-AS-BOOK.pdf https://cma.org.sa/en/Awareness/Publications/booklets/Booklet_4.pdf https://www.icsi.edu/media/portals/25/IPO.pdf https://old.mu.ac.in/wp-content/uploads/2017/01/FINANCIAL-STATEMENT-ANALYSIS.pdf https://ncert.nic.in/textbook/pdf/jess202.pdf https://dea.gov.in/sites/default/files/

https://dea.gov.in/sites/default/files/ https://dea.gov.in/monthly-economic-reporttable

https://rbidocs.rbi.org.in/rdocs/Publications/PDFs/0HSIE_F.PDF https://ncert.nic.in/textbook/pdf/lebs202.pdf https://www.oecd.org/industry/inv/investmentfordevelopment/338061 26.pdf https://www.youtube.com/watch?v=NV8Ew6PcQhY file:///C:/Users/User/Downloads/1-s2.0-S0970389617304664main.pdf

(EX402) POWER ELECTRONICS

1. AIM

- 1. To understand basic concepts of Power Electronic devices.
- 2. To understand concepts of triggering circuits.
- 3. To understand the working of various converter circuits.

2. COURSE OBJECTIVES / RATIONALE:

This course will enable the students to understand the working of power electronic devices and converter circuits.

3. PRE-REQUISITES:

- 1. Basic knowledge of Electronic Devices.
- 2. Basic knowledge of Ac waveforms.

3. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code & Periods/Week				Total		Exan	nination	n Scheme	
course title	(iı	n hou	rs)	Credits	The	ory	Pra	actical	Total
				Marks		Marks		Marks	
			-					-	
EX 402 POWER	L	Т	Р	C	TH	TM	TW	PR/OR	
ELECTRONICS	03	-	02	05	75	25	25		125

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain working of various power electronics devices & circuits. & SCR triggering methods.
- 2. Demonstrate operation and applications of various power electronics circuits
- 3. Distinguish between different types of rectifiers, converters, Choppers & Inverters.
- 4. Choose appropriate power electronic circuits for specific applications.
- 5. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatn& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	1	2	1			1
CO2	2	2	2	3	1	3	1
CO3	2	1	2	3	1	3	2
CO4	2	2	3	3	2	3	3

Relationship : Low-1 Medium-2 High-3

ELECTRONICS AND COMMUNICATION ENGINEERING CURRICULUM

	PSO1	PSO2
CO1	3	1
CO2	3	2
CO3	3	1
CO4	3	2

M = Marks Thr = Teaching hours CO = Course Objectives]
Unit	Μ	Th	СО
1. POWER ELECTRONIC DEVICES	21	16	CO1,2,3
1.1 Schematic, Symbol, Working and Characteristic of SCR,DIAC,TRIAC,LASCR,UJT,PUT.			
1.2 Two transistor model of SCR, turn on-turn off characteristics of			
SCR, VI characteristic of SCR			
Triggering methods: Voltage triggering, Gate triggering, dv/dt triggering,			
light triggering.			
1.3 Pulse triggering circuits using UJT & PUT			
1.4 Commutation: types & working of commutation(A ,B,C,D,E and F type) (no waveforms)			
1.5 Protection of Power Electronic Device: Snubber circuit, gate protection			
and over current protection			
2. PHASE CONTROLLED CONVERTORS	15	06	CO1,2,3,4
2.1 Working of half wave controlled converters with R, RL & RL with))-)
freewheeling diode. (input and output voltage waveforms only)			
2.2 Working of full wave Bridge controlled converter with R and RL load,			
Three phase half wave controlled converter with R load (input and output			
voltage waveforms only)			
3. CHOPPERS AND SWITCHING MODE REGULATORS	09	06	CO1,2,3,4
3.1 Operation of Single thyristor chopper and two thyristor chopper.			
3.2 Circuit diagram and working of Buck and Boost regulators.			
4. INVERTERS ,UPS AND SMPS	15	08	CO1,2,3,4
4.1 Definition, classification of inverters, Single phase half and full bridge inverter with R load, Series and parallel inverter.			
4.2 Block diagram of UPS (on-line and off-line), Comparison between Online and Offline UPS, Block diagram of SMPS.			
5. AC CONTROLLERS AND CYCLOCONVERTERS	15	12	CO1,2,3,
5.1 Working of On-Off and Phase Controlled AC voltage controllers,			- T
single phase unidirectional and bidirectional AC Voltage controllers with R			
load (fully controlled).			
5.2 Principle of operation of cycloconverter,			
single phase to single phase step up (2F) and step down cycloconverter			
(F/2) (mid-point &bridge configuration) (circuit with waveforms),			
Applications of Cycloconverters (to list).			
Total	75	48	-

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	POWER ELECTRONIC DEVICES	16	21
2	PHASE CONTROLLED CONVERTORS	06	15
3	CHOPPERS AND SWITCHING MODE REGULATORS	06	09
4	INVERTERS ,UPS AND SMPS	08	15
5	AC CONTROLLERS AND CYCLOCONVERTERS	12	15
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS (MIN 8)

No	Practical	Marks
1.	To study V-I characteristic of SCR	
2.	To study V-I characteristic of UJT	
3.	To study V-I characteristic of DIAC and TRIAC	
4	To study V-I characteristic of PUT	
5.	To study the Resistance triggering and Resistance Capacitance triggering of SCR	
6.	To study pulse triggering using UJT and PUT firing circuits	
7.	To study of Half wave controlled rectifier using R load	
8.	To study of Full wave controlled rectifier using R load	
9.	To study of Series and Parallel inverter using SCR	
	Total	
No	Class room Assignments	Marks
1	At-least 02 assignments	
2		
No	Tutorial Exercise	Marks
	NIL	
•••	Total	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Mohammed H. Rashid	Power Electronics	Prentice Hall of India, New Delhi
2	Bhimbhra P.S	Power Electronics	Khanna Publishers New Delhi
3	PC Sen	Power Electronics	McGraw Hill Education Private Limited,India
4			
5			

Reference Books for further study

S. No.	Author	Title of Books	Publishers

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1			
2			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1			
2			

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			
2			

(EX619) DATA COMMUNICATIONS

1. AIM

1. To introduce students to Data Communication through a network.

2. COURSE OBJECTIVES:

The students will able to:

1. To understand data flow through a computer network.

3. PRE-REQUISITES:

Students should know

1. Analog and Digital Communication Techniques.

4. TEACHING AND EXAMINATION SCHEME

Semester	VI										
Course code	e &	Peri	ods/W	/eek	Total	Exami		ninatior	ination Scheme		
course title	e	(ii	n hour	s)	Credits	Theory		Pra	Practical		
						Ma	Marks Marks M		Marks		
EX619 Dat	ta	L	Т	Р	C	TH	TM	TW	PR/OR		
Communicati	ions	3	-	2	5	75	25	25	25	150	

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Describe various Protocols for Data link layer.
- 2. Identify Components of computer communication and types of Computer Networks.
- 3. Analyse functions of various layers in the OSI model of a computer Network.
- 4. Interpret various errors and their control in a network.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn& Testing	Engg. Practices for Society,Sustainabil ity& Environment	Project Management	Life -long Learning
CO1	2	1	0	1	0	2	3
CO2	2	1	0	1	0	2	3
CO3	2	1	0	1	0	2	3
CO4	2	2	0	1	0	2	3

6. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

M = Marks Thr = Teaching hours CO = Course Objectives]	
Unit	Μ	Thr	CO
1 Introduction to Data Communication and Computer Networks	15	10	CO2
1.1 Components of Data Communication system			
Five major elements of the system and their meaning.			
1.2 Types of Data			
Various types of data(Picture, Video, Audio etc.) and various types of			
data signals (Analog and digital).			
1.3 Direction of Data Flow			
Simplex, half and full Duplex.			
1.4Modulation techniques used			
List of Analog and Digital modulation techniques, Quadrature Phase			
Shift keying and QAM system working.			
1.5Type of Connection			
Point to point and multipoint.			
1.6Topologies			
Mesh, Star, Bus, and Ring topologies and their comparisons.			
1.7Categories of Networks			
Brief description of LAN, WAN, MAN.			
1.8 Protocols and Standards			
Meaning and key elements of protocol, Important standard organizations.			
2 Network Layers (No Mathematical treatment)	10	07	CO3
2.1 Internet Model			
Organization and Functions of Physical, Data link, Network, Transport			
and Application layers.			
2.2 OSI Model			
Functions of Session and Presentation layers, Data flow through all			
layers.			
2.3 Data Transmission Modes			
Parallel, Serial, Synchronous and Asynchronous.			
3 Error Detection and Correction	12	06	CO4
3.1 Types of Errors			
Single bit error, Burst Error.			
3.2 Detection of Error			

Redundancy, Parity Check, CRC, Checksum.			
3.3 Correction of Error			
Forward Error Correction, Hamming Code, Burst Error correction.			
4 Data Link Control & Protocol	27	18	CO1
4.1 Flow and Error Control			
Flow and Error control meaning and Operation of error control			
mechanisms - Stop-and-Wait ARQ, Go-Back-N ARQ, and Selective			
Repeat ARQ.			
4.2 Data Link Protocol			
HDLC Protocol- Types of frames, Frame formats of I frame, S frame			
and U frame, Data transparency.			
4.3 Point – to – Point Protocol			
Meaning, services provided, frame format and transition states.			
4.4 Multiple Access Protocol			
Random Access meaning, CSMA/CD procedure and CSMA/CA			
procedure.			
Controlled Access meaning and methods.			
5 Local Area Networks	10	07	CO2
5.1 Wired LAN/ Ethernet			
Main features of Traditional Ethernet, Fast Ethernet and Gigabit			
Ethernet.			
5.2 Wireless LAN			
Main features of IEEE 802.11 and Bluetooth.			
5.3 Connecting Devices, backbone Networks and VLANs			
Repeaters, Hubs and Bridges, Bus and Star as backbone networks and			
main features of Virtual LANs.			
Total	75	48	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit	Unit	Number	Marks
No		of lectures	
1	Introduction to Data Communication and Computer Networks	10	15
2	Network Layers	07	10
3	Error Detection and Correction	06	12
4	Data Link Control & Protocol	18	27
5	Local Area Networks	07	11
	Total	48	75

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Study of different types of transmission media.	
2.	Study and analysis of QPSK Modulation.	
3.	Study and analysis of QAM Modulation.	
4	Study of Serial Interface using RS-232.	
5.	Study of Pc to Pc or PC to Printer Communication using parallel port.	
6.	Study of LAN using Bus topology.	
7.	Study of LAN using Star topology.	
8.	To study/configure a MODEM for Computer to Internet connection	
9.	To configure a hub/switch	
10.	Study interconnection of cables for data communication.	
11.	Study Pc to PC communication using Ethernet LAN	
12.	Study Pc to PC communication using Wireless LAN	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignment	
No	Tutorial Exercise	Marks
	NIL	
•••		

11. LEARNING RESOURCESText

Books

S. No.	Author	Title of Books	Publishers
1	Behrouz A Forouzan	Data Communications and Networks 3 rd Edition	Tata McGraw-hill publishing
2			

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1			
2			
3			

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1			
2			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1			
2			

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			
2			

(EX617) Mobile Communication

1. AIM

- i. To make students aware about the evolution of cellular communication
- ii. To provide basic knowledge of various concepts & processes used in cellular communication
- iii. To introduce students to the features & services provided by modern cellular systems

2. COURSE OBJECTIVES:

The students will able to:

- i. Understand the basic cellular communication concepts
- ii. Describe various features & services provided by GSM & CDMA
- iii. Understand features of modern cellular system.

3. PRE-REQUISITES:

i. Communication Engineering

4. TEACHING AND EXAMINATION SCHEME

Se	emester	VI									
Course code & Periods/Week			Total	Examination Scheme							
	course title (in hours)		Credits	The	ory	Pra	actical	Total			
				Ma	rks	M	larks	Marks			
						•					
E	EX620 Mo	bile	L	Т	Р	C	TH	TM	TW	PR/OR	
C	ommunic	ation	3	-	2	5	75	25	25	25	150

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand various concepts, components & processes used in cellular communication
- 2. Classify & compare various multiple access techniques used in cellular communication
- 3 Apply the knowledge of Cellular Communication to identify the features of GSM & CDMA
- 4. Analyze features of various modern cellular systems

Wapping course outcomes with Frogram outcomes							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability & Environment	Project Management	Life -long Learning
CO1	2	2	2	-	1	2	3
CO2	3	2	2	-	-	1	2
CO3	2	2	2	1	1	2	3
CO4	2	3	1	-	2	-	3

6. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	3
CO2	3	2
CO3	3	3
CO4	3	3

M = Thr = Teaching CO = Course Objectives Marks hours			
Marks hours Unit	Μ	Th r	СО
1 Introduction to Cellular Communication Systems	24	16	CO1
1.1 Need of Mobile telephone system, Conventional Mobile			
telephone system & its limitations			
1.2 Analog & digital cellular system : Brief comparison			
1.3 A basic cellular system: Diagram & operation of each subsystem			
1.4 Cellular communication Concepts:			
• Cell, Cell geometry			
• Frequency reuse concept, frequency reuse schemes,			
frequency reuse distance			
• Co-channel interference & adjacent channel			
interference(definitions)			
Co-channel reduction factor			
• Cell splitting: need & types, sectoring, segmentation &			
dualization			
Handoff: need, types (based on signal strength and C/I			
ratio), delayed handoff, power difference handoff, mobile			
assisted handoff, soft handoff & Intersystem handoff.(No			
Mathematical Treatment)			<u> </u>
2 Components and Working Principle of Cellular Communication Systems	15	09	CO1 & CO2
2.1 Components of cellular communication system:			
Base station, MTSO, Mobile handset (Block Diagram			
Operation).			
2.2 Processes: Logon & Monitoring Process in cellular system			
2.3 Routing cellular calls: mobile to land line, landline to mobile,			
mobile to mobile & handoff mechanism.			
2.4 Frequency spectrum utilization, Setup Channels: Access & Paging Channels			
2.5 Multiple access techniques: Basic concepts & features of FDMA,TDMA & CDMA			
3 Digital Cellular system-GSM	09	06	CO3
3.1 Global system for mobile(GSM):			
Services & Features			

Architecture & Operation of each subsystem			
• Frequency channels(TCHs,CCHs in brief)			
Location update management			
Authentication & encryption	0.0	0.5	~~~
4 Digital Cellular system-CDMA	09	06	CO3
4.1 CDMA cellular system:			
• Services & Features			
• Radio aspects, forward channel structure and reverse			
channel structure			
• Power control			
• Soft handoff			
• Authentication, encryption and privacy			
5 Modern cellular systems	18	11	CO4
5.1 Limitations of 2G Cellular System			
5.2 Features of 2.5G Cellular system, Features of EDGE and GPRS			
systems			
5.3 3G technology networks: Features of			
• CDMA-2000			
• WCDMA(UMTS).			
• Wireless Local area network(WLAN)			
• Bluetooth & Personal Area Networks(PANS)			
5.4 Features of 4G cellular system, Comparison of 3G & 4G			
cellular system			
5.5 Overview of 5G cellular system:			
Performance Targets			
• Usage Scenario: Enhanced Mobile Broadband			
(eMBB),Ultra Reliable Low Latency Communications			
(URLLC), Massive Machine Type Communications			
(mMTC)			
 Advantages of 5G 			
Total	75	48	
1000		•••	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. Specification table for theory/ macro-lesson plan

Unit No	Unit	Number of lectures	Marks
1	Introduction to Cellular Communication Systems	16	24
2	Components and Working Principle of Cellular Communication Systems	09	15
3	Digital Cellular system-GSM	06	09
4	Digital Cellular system-CDMA	06	09
5	Modern cellular systems	11	18
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
-		
1.	Study the features, specification and block diagram operation of mobile	
	handset	
2.	Identify various sections of a mobile handset (hardware)	
3.	Measure/Observe signals at different sections of Mobile Phone	
4.	Identify various hardware faults in a mobile handset	
5.	Comparision of GSM & CDMA technology	
6.	Study of merits & limitations of Bluetooth technology	
7.	Study of merits & limitations of Wi-Fi(WLAN)	
8.	Transfer of data using Bluetooth & Wi-Fi	
9.	Visit to GSM /CDMA Base station (Optional)	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignments	
No	Tutorial Exercise	Marks
1	NIL	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	William Lee	Mobile cellular telecommunications	McGraw Hill ISBN 978-0-07- 063599-9
2	Theodore s. Rappaport	Wireless communications- Principles & Practice	Prentice Hall of India ISBN 81-203-2381-5
3	Raj Pandya	Mobile & Personal Communication systems & services	Prentice Hall of India ISBN 81-203-1710-6
4	Wayne Tomasi	AdvancedElectronicCommunication systems	Pearson Education ISBN 81-297-0107-3

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	T.G.palanivelu &	Wireless & Mobile Communication	PHI learning pvt ltd
	R.Nakkeeran		ISBN 978-81-203-
			3607-0
2	Rishabh Anand	Wireless Communication	S.Chand & company
			Ltd.
			ISBN 81-219-4055-9

Indian and International codes needed

S. No.	Author	Title of Books	Publishers	
1				

Internet and Web Resources

1	https://en.wikipedia.org/wiki/5G
2	https://www.zdnet.com/article/what-is-5g-everything-you-need-to-know/
3	https://pdfs.semanticscholar.org/b2ab/1c503c76a4b3870feaec5c3a6a157972a555.pdf

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			

(EX615) VHDL

1. AIM: To introduce hardware description language VHDL and its application in designing digital circuits and hardware in FPGAs

2. COURSE OBJECTIVES: learn VHDL programming and use it to design and simulate different types of digital circuits and programmable logic devices and field programmable gatearrays..

The students will able to:

- 1. Learn VHDL programming.
- 2. Design and write codes for different digital circuits
- 3. Use VHDL for simulating the operation of digital hardware
- 3. PRE-REQUISITES: Students should know
- 1. Basic knowledge of c programming
- 2. Combinatinal and synchronous sequential circuits
- 3. Flip flops, registers and counters

4. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course code	&	Peri	ods/V	Veek	Total	Examination Scheme				
course title	:	(ir	ı hou	rs)	Credits	The	ory	Pra	Total	
						Mai	rks	Marks		Marks
			-							
(EX615) VHI	DL	L	Т	Р	C	TH	TM	TW PR/OR		
		3	-	2	5	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Develop basic programming skills in VHDL
- 2. Write/Develop VHDL codes for combinational and sequential digital circuits
- 3. Compile, debug and simulate VHDL codes for combinational and sequential digital Circuits.
- 4. Design digital circuits and logic devices

6. Mapping Course Outcomes with Program Outcomes							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime ntatn&	Engg. Practices for Society,Su stainabilit v	Project Managem ent	Life -long Learning
CO1	2	2	3	1	0	2	3
CO2	2	3	3	2	0	2	3
CO3	2	3	1	3	0	2	3
CO4	2	3	3	2	2	2	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	2	2
CO4	3	3

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Th	СО
		r	
1. Overview of digital design with VHDL	9	5	CO 1
1.1 1.1 VHDL:-What is VHDL			
Hardware abstraction			
• Why use VHDL			
Shortcomings of VHDL			
steps in using VHDL for design Synthesis			
1.2 Hierarchical Modeling techniques- Top down and bottom up design			
methodology, difference between modules and instances (only definition)			
1.3			
1.4			
2. VHDL reference	15	9	CO 1

Directorate of Technical Education, Goa	otat			
2.1 Documentation (comment line)				
Data objects				
 Data object names 				
 Data object values and numbers 				
Signal data objects				
• Bit and Bit vector types				
 STD_LOGIC and STD_LOGIC_VECTOR types 				
• Signed and unsigned type				
• INTEGER type				
CONSTANT data objects				
VARIABLE data objects				
• Arrays				
Operators				
2.2 VHDL design entity-Entity declaration, Architecture, Package.				
writing simple VHDL code for a given logic function				
2.3				
3 VHDL code for combinational circuits	21	14	CO 2,3	
3.1 selected signal assignment- 4-to-1 mux			,	
3.2 conditional signal assignment-priority encoder, 4 bit comparator				
3.3 process statement-2-to-1 mux using if-then-else statement				
sis process statement 2 to 1 man using it then else statement				
3.4 case statement- 2-to-4 binary decoder, BCD to 7 segment				
Si rease statement 2 to remary decoder, DeD to r segment				
3.55 VHDL code for:				
And,,or,nand,nor gates				
• 4 bit arithmetic adder,4 bit arithmetic subtractor				
4 Flip Flops, Registers	12	8	CO 2,3	
	12	0	CO 2,3	
4.1 Circuit, timing diagram, graphical symbol and VHDL code of:-				
gated D latch,D flip flop,T flip flop and JK flip flop				
4.2 Circuit diagram and VHDL code of- simple shift register and				
parallel-access shift register				
5 Sunchronous Segmential singuits and logic design	10	10	<u>CO 24</u>	
5 Synchronous Sequential circuits and logic devices	18	12	CO 3,4	
5.1 Circuit diagram and timing diagram of-4-bit up counter,4-bit down				
counter,2-digit BCD counter.				
5.2 Moore type finite state machine-state diagram and VHDL code				
5.3 Mealy type finite state machine-state diagram and VHDL code.				

5.4 Programmable logic devices-PAL,PLA,CPLD,FPGA, applications of CPLD and FPGA			
Total	75	48]

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies 9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Overview of digital design with VHDL	5	9
2	VHDL reference	9	15
3	VHDL code for combinational circuits	14	21
4	Flip Flops, Registers	8	12
5	Synchronous Sequential circuits	12	18
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Design and simulate using -VHDL language	
1.	Design and implementation of Basic gates-AND,OR,NOT gates	
2	Design and implementation of 4-to-1 mux	
3	Design and implementation of 2-t0-4 Decoder	
4	Design and implementation of RS Flip Flop	
5	Design and implementation of JK Flip Flop	
6	Design and implementation of D Flip Flop	
7	Design and implementation of 4 bit up counter	
8	Design and implementation of shift register	
9	Design and implementation of logic devices	
		Marks
No	Assignments	
1	At-least 02 assignments	
2		
•••		
No	Tutorial Exercise	Marks
1	NIL	
2		
	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Stephen Brown and	Fundamentals of Digital Logic with	Tata McGraw
	Vranesic	VHDL design	Hill,2008, India,
			ISBN 978-0-07-
			352953–0
2	Samir Palnitkar	Verilog HDL: A Guide to Digital	Prentice Hall
		Design and Synthesis,	ISBN: 0-13-044911-
			3
			(downloadable)
3	Jayaram Bhaskar	A VHDL primer	PTR Prentice Hall
4			
5			

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Kevin Skahill and	VHDL for Programmable Logic	Pearson Education
	Cyress		(downloadable)
2	Douglas Perry	VHDL:Programming by example	Tata McGraw
			Hill,2008, India,
			ISBN 978-0-07-
			049944-7
3			

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1			
2			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1			
2			

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			
2			

(EX616) ROBOTICS

1. AIM

To develop required skills in the students so that they are able to acquire the following competency: 1. Operate and maintain different types of robots.

2. COURSE OBJECTIVES:

Nowadays industries demand continuous and fine quality work in different processes of industries. All process is generally done by humans and as we know humans are not able to give same quantity and quality of work with respect to time, environment and complexity of the work. To get quality and quantity of work in toughest environment or the environment which is not suitable for the humans to work, industries demand for robots and its operator. Operators which operate this robot need some basic knowledge of robotics. To fulfil the demand of industries and advancement in technology it is necessary for the electronic engineers to have knowledge and skill in robotics.

The students will able to:

1. Explain different components of robot & compare various types of Robot.

2. Study the working of various robot controller & Differentiate between various robot controllers.

3. Explain the kinematics & vision system of Robot.

4. Compare the uses of various sensors & warning system & appreciate the application of robot s invarious industries.

3. PRE-REQUISITES:

Students should know

1. Basics of C programming.

2. Embedded systems.

4. TEACHING AND EXAMINATION SCHEME

Semester	VI									
					Exan	ninatior	n Scheme			
Course code & course title		-	ods/V 1 hou		Total Credits	The Mai	•		actical Iarks	Total Marks
		L	Т	P	С	TH	TM	TW	PR/OR	
EX616 ROBOTI		3	-	2	5	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CO1. Define and select right parameters for robot for given application.CO2. Distinguish between various robot controller & Actuators.

CO3. Maintain the different types of robot sensors.

CO4. Operate the robot through software and trouble-shoot minor problems.

$\mathbf{6}.$ Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society,Susta inability& Environment	Project Management	Life -long Learning
CO1	3	3	3	3	0	2	0
CO2	2	1	1	2	0	1	0
CO3	3	2	3	3	1	2	2
CO4	3	3	3	3	0	2	2

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	2	1
CO3	3	2
CO4	3	2

M = Marks Thr = T	Teaching hours	CO = Course Objectives			
Unit			Μ	Thr	CO
1. ELEMENTS OF F	ROBOT		18	12	CO
					1,3
1.1 Basic Concepts in	(Fundamentals of	f) robotics:			
Introduction, Definition	on, Automation an	d robotics, Generations of			
Robots, Robot applica	tions.				

1.2 Different classifications of robot:			
By application (Material handling, operations, Assembly,			
Inspection), by coordinate system (Cartesian, Cylindrical, Spherical,			
Articulated, SCARA), by actuation (drive) system (Hydraulic,			
Electric, Pneumatic), by control system (Limited sequence, playback			
with point to point control, playback with continuous control,			
Intelligent Robots) and by programming method (Lead-through,			
Textual).			
1.3 Robot anatomy:			
Links and joints, Joint notation. Degree of Freedom. Robot			
resolution, accuracy and repeatability. Concept of workspace.			
2. ROBOT CONTROLLER AND ACTUATION SYSTEMS	15	10	СО
			1,2,4
2.1 Robot controller: open and closed loop control systems			
(explanation with block diagram, advantages & comparison)			
Controllers: (On-off, Proportional, Integral, Proportional plus			
Integral, Proportional plus derivative, Proportional plus integral plus			
derivative- explain in brief)			
2.2 Robot Actuation and feed-back components			
Position Sensors (Potentiometers, encoders), Actuators (DC servo			
motors, Stepper motors, Pneumatic and Hydraulic), Velocity			
Sensors, Power Transmission Systems (Gears, Power Screws)			
3. ROBOT EFFECTORS, SENSORS & MACHINE VISION	15	10	CO
			2,4
3.1 Robot End Effectors: Grippers and Tools.			
Basic Definition and operation: Mechanical grippers, Vacuum cups,			
Magnetic grippers. Tools as end effectors.			
3.2 Transducers and Sensors			
Desirable features of sensors.			
Basic working principle:- Tactile sensors (Touch, Force), Proximity			
and Range sensors (Light and Ultrasonic)			
Uses/ Applications of sensors in Robotics.			
3.2 Machine Vision			
Introduction to Machine Vision (Sensing and digitizing Image,			
Image processing and analysis, Application) (block diagram and			
explanation only)			
Robotic applications of machine vision			
4. ROBOT PROGRAMMING	12	6	CO 4

 4.1 Robot programming Lead-through (Powered & Manual) and Textual robot languages. Robot Programme as a Path in Space, Motion Interpolation, WAIT, SIGNAL and DELAY Commands, Capabilities and Limitations of Lead through Methods, Robot Language Structure. Comparison of Lead-through (Powered & Manual) v/s Textual robot languages 			
5. ROBOTICS APPLICATIONS, MAINTAINANCE &	15	10	CO
SAFETY			3,4
5.1 Robotics Applications			
Material Transfer (Pick and place)			
Process operations (Arc wielding)			
Assembly Application (Peg in hole)			
Inspection Application (Sensor/Vision based inspection)			
Non Industrial Application (Health Care, Research and Exploration			
etc.)			
Robot maintenance: Need and Types.			
General Safety Norms, aspects and precautions in robot handling.			
Total	75	48	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies 9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	ELEMENTS OF ROBOT	12	18
2	ROBOT CONTROLLER AND ACTUATION SYSTEMS	10	15
3	ROBOT EFFECTORS, SENSORS & MACHINE VISION	10	15
4	ROBOT PROGRAMMING	06	12
5	ROBOTICS APPLICATIONS, MAINTAINANCE & SAFETY	10	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Electronic Control of a DC Servo motor	
2.	Electronic Control of a Stepper motor	
3.	Electronic control of BLDC motor	
4.	Interfacing of proximity and range sensors to Arduino	
5.	Interfacing of Accelerometers and Gyroscopes sensors to Arduino	
6.	Interfacing of force sensors to Arduino	
7.	Programming a robot arm for straight line, circular and curved paths	
8.	Programming a robot arm for pick and place operation.	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignments	
2		
•••		
No	Tutorial Exercise	Marks
1	NIL	
2		
•••	Total	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	MikkelP.Groover,	Industrial Robotics Technology-	Tata McGraw Hill
	Mite chellweiss,	Programming and Applications	
	RogernNegal and		
	NicholesG.Odress		
2	R.K.Mittal,	Robotics and controls	Tata McGraw Hill
	I.J.Nagrath		
3	K.S. Fu, R. C.	Robotics: Control, Sensing, Vision	McGraw Hill
	Gonzalez, C.S.G.	and Intelligence	
	Lee		
4			
5			

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Doughlaes –R.	An Introduction to robotics	
	Halcoojr		
2			
3			

Indian	and International	codes needed	
S. No.	Author	Title of Books	Publishers
1			
2			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1	http://enggmechanical.blogspot.com/2010/06/classification- of-robot.html		
2			

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			
2			

(EX631) TV ENGINEERING

1. AIM

- 1 To enable the students to understand the concept of sound & Video recording .
- 2. To enable them to analyze composite video signal B/W as well as colour & VSB modulation. .
- To enable them to understand performance of B/W & colour picture tube,TV transmitter &receiver..
- **4.** To introduce LCD & LED TV block diagrams.
- **5.** To understand the performance of HDTV,CCTV.DTH etc.

2. COURSE OBJECTIVES :

The Course will introduce the students with working principle, block diagrams of sound transducers, B/W &colour TV, LCD, LED TV, CCTV, DTH, HDTV, cable TV so that they will be ableto install, test & troubleshoot simple faults in audio & Video equipments.

3. PRE-REQUISITES: Students should know1

.Electronic Circuits

2 Analog Communication

4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code & Periods/Week			Total	Examination Scheme					
course title	(iı	n hou	rs)	Credits	The Ma	·	-	actical larks	Total Marks
EX631 TV Engg.	L	Т	P	С	ТН	TM	TW	PR/OR	
	3	-	2	5	75	25	25	25	150

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

1.Understand various concepts and characteristics of Audio Transducers.

2 Describe applications of TV such as CCTV,CATV,HDTV,DTV,DTH,LCD & LED TV.

3.Differentiate between various audio & Video recorder formats.

4. Analyze and compare B/W & colour TV system

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society,Susta inability & Environment	Project Management	Life -long Learning
CO1	2	0	0	3	0	0	3
CO2	2	1	0	3	0	0	0
CO3	2	0	2	0	0	3	3
CO4	2	1	2	3	0	2	3

6. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

		٦	
M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Th	CO
		r	
1 SOUND TRANSDUCERS	15	9	CO 1
1.1 Characteristics: sensitivity, signal to noise ratio, directivity, output impedance, distortion and frequency response			
1.2 Requisites of a good microphone.			
Construction, functioning, features, and applications of microphones:			
Crystal, Moving coil. And Electret.			
1.3 LOUD SPEAKERS: Characteristics of loudspeaker			
Working principles of horn type and electrodynamic type			
loudspeaker Baffles(Finite, infinite, bassreflex & acoustic labryinth)			
&Enclosure,Multiway speaker system (Woofers & Tweeters),surround			
sound system(block diagram)			
sound system(block diagram)			
2 TV COMMUNICATION SYSTEM	18	12	CO 4
2.1 TV PICTURE ANALYSIS: -Frequency range of various VHF/UHF			
band, Aspect ratio, Persistence of vision.			
2.2 Scanning: Need, Sequential scanning, flicker, interlaced			
scanning, interlace error, interlace error calculation, horizontal scanning,			
vertical scanning			
	I	I	I

2.3 Composite Video Signal (CVS) .need for synchronization,Horizontal sync and blanking pulses, Vertical sync and blanking,(No equalizing pulses).			
2.4 TV Camera tube: Characteristics of camera tube,			
construction and working of vidicon			
2.5 VSB Modulation			
3 COLOUR TELEVISION	18	10	CO 4
3.1Compatibility of color TV system with monochrome system.			
3.2 Additive and subtracting mixing of colors, luminance, Hue and Saturation			
3.3 Block diagram of video camera and its explaination			
3.4 Construction and working principles of Trinitron picture tube.			
3.5 Colour signal transmission, signal modulation, transmission,			
bandwidth, weighing factors & chrominance signal			
3.6 Block diagram of PAL TV transmitter & receiver.			
4 TYPES OF TV & APPLICATIONS	15	11	CO 3
a. Introduction to DIGITAL TV (DTV):Advantageous (picture			
quality, special features, special effects, high reliability)			
Digital Video production & Reproduction (Block Diagram)			
Digital picture transmission & Reception (Block Diagram)			
Picture in picture feature in DIGITAL			
Principles of working HDTV			
4.2 Principle of working ,features & Block diagram of Cable TV, PAY TV THROUGH CABLE,CCTV and DTH.			
4.3 LCD TV & LED TV :Introduction & block diagram			
4.4 Night vision camera			
5 VIDEO RECORDING & PRODUCTION	9	6	CO 3
5.1 Comparision VCD virses DVD			
5.2 DVD formats, recording and playback on DVD			
5.3 Introduction to BLU-RAY DISC, Block diagram BD player &			
operation			
5.4 Comparision of BLU-RAY &DVD			
Total	75	48	
1000	15	0	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Sound Transducers	9	15
2	TV Communication system	12	18
3	Colour Television	10	18
4	Types of TV & Applications	11	15
5	Video Recording & Production	6	9
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1	Test performance of pattern generator.	
$\frac{1}{2}$	Compare composite video signal (B/W) of different patterns	
3	Test performance of picture tube (B/W).	
4	Compare composite video signal (colour) of different patterns.	
5	. Test performance of TV receiver controls	
6	Test performance of picture tube (colour)	
7	Tracing of different sections of TV receiver	
8	Location of faults in the different sections of TV receiver	
9	. Study of a TV cable network system through internet	
10	Study of a CCTV system through internet	
No	Class room Assignments	Marks
1	At least 2 assignments	
2		
No	Tutorial Exercise	Marks
1	NIL	
2		
	Total	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R.R Gulati	Modern Television Practice Principles, Technology and Servicing 2/Ed	New age Internationl Publisher, New Delhi ISBN- 9788122413601
2	. R.R Gulati	Composite Satellite & cable Television	New age Internationl Publisher, New Delhi ISBN- 9788122413601
3	A.M.Dhake	TV and Video Engineering	TMHPublication,New DelhiISBN:9780074601051
4	Gordon J King	Audio Handbook	Newnes-Butterworth ISBN- 13:9780408001502
5	Maini	Colour T.V. and Video Technology	PHI Publications. New Delhi
6	K.D. Desai,	Video Cassette Recorders	Jeevan Deep Prakashan, Mumbai, 2nd , 1988
7	Ibrahim, K.F. Newnes	Guide to Television and Video Technology, Fourth Edition	Newnes-Butterworth ISBN-13: 9780750681650
8	John D. Lenk	Complete Guide To Laser Video Disc	PHI Publications. New Delhi, 2nd, 1995
9	R.G.Gupta (for unit 4 &5)	Television Engineering and video systems . second edition	second edition ,MH New Delhi
10	LCD LED Screen Panel Repair Guide	http://lcdrepairguide.com/screen- repair/	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1			
2			
3			

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1			
2			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1			
2			

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			
2			

(EX630) Antennas & Transmission Lines

1. AIM

- i. To provide knowledge of radiation mechanism employed by antennas
- ii. To enable the students to understand the construction, radiation pattern & applications of various commonly used antennas
- iii. To introduce to students the basic concepts of Transmission Lines.

2. COURSE OBJECTIVES:

The students will able to:

- i. Understand the radiation mechanism of antennas & describe various parameters of antennas.
- ii. Describe construction, radiation pattern & applications of various types of antennas
- iii. Understand the types and properties of Transmission Lines.

3. PRE-REQUISITES:

- i. Basic Electronics Engineering
- ii. Communication Engineering

4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Peri	iods/V	Veek	Total		Exan	nination	n Scheme	
course title	(ii	n hou	rs)	Credits	The	ory	Pra	actical	Total
				Marks Marks		[arks	Marks		
EX630 Antennas	L	Т	P	C	TH	TM	TW	PR/OR	
& Transmission	03		02	05	75	25	25	25	150
Lines									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Describe Construction & operation of Antennas & Transmission Lines
- 2. Classify antennas, arrays & Transmission Lines used in Communication Systems.
- 3. Differentiate between various types of Antennas & Transmission Lines.
- 4. Analyze the characteristics & applications of Antennas & Transmission Lines

of mapping	004200 040						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society,Sustai nability & Environment	Project Management	Life -long Learning
CO1	2	-	2	1	1	2	3
CO2	2	2	2	-	1	-	3
CO3	2	2	2	2	1	2	3
CO4	2	2	2	-	1	-	3

6. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

M=Thr=TeachingCO = Course ObjectivesMarkshoursImage: Course ObjectivesImage: Course Objectives			
Unit	Μ	Thr	СО
1 Fundamentals of Antenna	12	08	CO1
1.1 Concept of Electromagnetic wave, static electric & magnetic field of steady electric current			
1.2 Definition of Antenna, Electromagnetic radiation			
1.3 Hertzian dipole			
1.4 Current & Voltage distribution			
1.5 Resonant Antennas, Radiation Patterns & length calculations			
1.6 Non Resonant Antennas			
2 Antenna Terminologies	15	09	CO2
2.1 Antenna Gain & Effective radiated power : concept and definitions of directive gain ,power gain & effective radiated power.			
2.2 Polarization, , affective aperture, effective length of antenna, effects of antenna height, antenna temperature, front to back ratio, antenna field zones & Field intensity			
2.3 Antenna resistance: Definition of radiation resistance & concept of antenna losses & efficiency			
2.4 Beamwidth, Bandwidth & polarization of antennas			
2.5 Effects of Ground on Antenna: ungrounded antennas, Grounded antennas, Grounding systems, Effects of antenna height			
3 Basic Antennas & Arrays	15	09	CO2 & CO3
3.1 Radiation characteristics of wire antennas: Resonant wire antennas $(\lambda, 2\lambda)$, Non Resonant (Rhombic) Antenna			
3.2 Folded Dipole & Loop Antenna : construction , radiation Pattern & applications			
3.3 Dipole Arrays: Parasitic elements,Broadside array & End fire array			
3.4 Yagi-Uda Antenna: Construction, operation, radiation pattern & application			
4 UHF and Special purpose Antennas	15	10	CO2 & CO3
4.1 Antennas with Parabolic Reflectors: Geometry of the parabola,			
properties of parabolic reflectors, feed mechanisms, other parabolic			
--	----	----	-----
reflectors, shortcomings & difficulties.			
4.2 Horn Antennas: types, construction & features			
4.3 Lens Antenna: principle of operation & practical considerations			
4.4 Micro strip Antenna: salient features, Advantages & limitations,			
Rectangular microstrip Antenna, Feed mechanism, Radiation			
Pattern & applications			
4.5 Smart Antenna: Need & applications			
5 Transmission Lines	18	12	CO4
5.1 Basic Principles: Definition, classification of transmission lines,			
Equivalent circuit representation, Characteristics Impedance.			
5.2. Losses in Transmission Lines & Velocity Factor			
5.3 Standing Waves: Reflections from imperfect termination, standing waves, standing wave ratio & Normalization of impedance			
5.4 Quarter & Half Wavelength Transmission Lines: Impedance			
inversion by quarter wavelength, Quarter wave transformer &			
impedance matching, Properties and application of Half			
wavelength transmission line.			
5.5 Reactance properties of Transmission Lines: Open & Short			
circuited lines as tuned circuits, properties of lines of various lengths			
Total	75	48	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies 9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Fundamentals of Antenna	08	12
2	Antenna Terminologies	09	15
3	Basic Antennas & Arrays	09	15
4	UHF and Special purpose Antennas	10	15
5	Transmission Lines	12	18
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Any 8)	Marks
1	Check the rediction rottern of helf were direly	
1.	Check the radiation pattern of half wave dipole	
2	Check the radiation pattern of rhombic antenna.	
3	Check radiation pattern of loop antenna.	
4	Check radiation pattern of folded dipole antenna	
5	Test the performance of the Yagi –uda antenna.	
6	Test the performance of the broad side array.	
7	Test the performance of the end fire array antenna.	
8	Check the radiation pattern of parabolic reflector antenna.	
9	Test the performance of horn antenna.	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignments	
•••		
No	Tutorial Exercise	Marks
1	NIL	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	George Kennedy, Bernard Davis	Electronic communication Systems	Tata McGraw- Hill
2	John D Kraus, Marhefka Ronald J, Khan Ahmad S	Antennas & Wave Propagation	Tata McGraw- Hill
3	Raju, G. S. N	. Antennas and Wave Propagation	Pearson Education India, 3rd edition or latest
4	Prasad, K.D. and Handa, Deepak	Antenna and Wave propagation	Satya Prakashan , New Delhi, 3rd edition or latest

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Das, Sisir and Das	Antenna and Wave propagation	Tata McGraw-Hill
	K.Annapurna		Education, 2013
2	Harish, A. R. And	Antenna and Wave propagation	Oxford University
	Sachidananda M.		Press,4th Edition or
			latest

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1			

Internet and Web Resources					
S. No.	Author	Title of Books	Publishers		
1					

Videos and Multimedia Tutorials

S. No.	Author	Title of Books	Publishers
1			

(EX628) VLSI Design and Application

1. AIM

To introduce students to chip fabrication and various steps involved in VLSI design flow.

2. COURSE OBJECTIVES :

The Student will be able to :

- 1. Implement functions using MOS logic following prescribed design rules through mask layouts
- 2. Develop and model simple MOS circuits through programming

3. PRE-REQUISITES :

Students should have knowledge of

- 1. Basic Concepts from Semiconductor Physics and Electronics
- 2. Fundamental Concepts from Digital Electronics
- 3. Basic Computer

4. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Periods/Week				Total	Examination Scheme					
Course cod course ti		(ir	n hou	rs)	Credits	The Ma	-	Practical Marks		Total Marks
EX628 VI	LSI	L	Т	Р	С	TH	TM	TW	PR/OR	
Design a Applicati		3	-	2	5	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the technologies/ processes involved in fabrication of ICs, operation of MOS devices, design rules, modeling commands and the complete VLSI design flow.
- 2. Apply the knowledge of MOS devices to explore channel length modulation, logic design, circuit modeling and design analysis.
- 3. Analyze the operation of MOS circuits, Implementation of Boolean functions, modeled circuits and VLSI design stages.
- 4. Evaluate and Select suitable MOS invertors, design implementation and programmable platforms based on comparative performance and application.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	3	0	1	0	2	0	2
CO2	3	2	3	2	0	2	0
CO3	3	2	1	2	0	2	3
CO4	3	3	3	1	2	2	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	2
CO2	2	2
CO3	3	2
CO4	3	3

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	Μ	Th r	CO
1 INTRODUCTION TO TECHNOLOGIES IN IC FABRICATION	15	08	CO 1
1.1 Silicon Semiconductor Technology : Concept of wafer processing, oxidation, epitaxy, deposition, etching in chip fabrication.			
1.2 Description of processes such as Photolithography, Ion Implantation and Diffusion			
1.3 CMOS Technology: Description of n-well and p-well CMOS processes			
1.4 Introduction to Impact of chip fabrication on environment and solutions			
2 MOS TRANSISTORS	15	10	CO1/2/ 3/4
2.1 Operation and V I Characteristics of NMOS transistor (Enhancement & Depletion types)			

2.2 Operation and V I Characteristics of PMOS transistor (Enhancement & Depletion types)			
2.3 Description of channel length modulation			
2.4 Concept of CMOS transistor, Operation of a CMOS Inverter with DC characteristics, Comparison of CMOS inverter with NMOS inverter and resistive load MOS inverter.			
3 VLSI LOGIC DESIGN	15	10	CO1/2/ 3/4
3.1 Definition of fan in and fan out, Concept of pass transistor, Implementation of logic gates (OR, AND, NOR and NAND) using pass transistors and CMOS Logic			
3.2 Implementation of simple Boolean expressions using pass transistors and CMOS logic, Comparison of design implementations			
3.3 Study of lambda rules and magic layout editor			
3.4 Drawing of Stick diagrams			
3.5 Drawing of mask layouts with concept of Euler paths			
4 INTRODUCTION TO SPICE	12	08	CO1/2/ 3/4
4.1 Introduction to SPICE Programming commands			
4.2 Modeling of MOS circuits using SPICE (level 1 model equations)			
5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS	18	12	CO1/2/ 3/4
5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional)			
5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation			
5.3 fault model (stuck at 1 and stuck at 0 fault modeling)			
5.4 Features and Working of FPGA and CPLD, Comparison between them.			
Total	75	48	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies 9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Uni t No	Unit	Number of lectures	Marks
1	INTRODUCTION TO TECHNOLOGIES IN IC FABRICATION	08	15
2	MOS TRANSISTORS	10	15
3	VLSI LOGIC DESIGN	10	15
4	INTRODUCTION TO SPICE	08	12
5	VLSI DESIGN METHODOLOGIES AND APPLICATIONS	12	18
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	V I Characteristics of N MOS Transistor	
2.	DC Characteristics of CMOS Inverter	
3.	Mask Layout for logic gates with lambda rules using CMOS logic in Magic Editor	
4.	Mask Layout for Boolean Expressions using CMOS logic in Magic Editor	
5.	Study of commands in SPICE with hands on practice	
6.	Modeling of logic gates using SPICE	
7.	Modeling of Boolean Expressions using SPICE	
8.	Implementation of logic gates using FPGA	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignments	
2		
No	Tutorial Exercise	Marks
1	NIL	
	Total	

11. LEARNING RESOURCES

: Text Books

S. No.	Author	Title of Books	Publishers		
1	Sung-Mo Kang, Yusuf	CMOS Digital Integrated Circuits	Mc Graw Hill		
	Leblebici	Analysis & Design	Education		
2	Neil H. E. Weste, David	CMOS VLSI design-A circuit	Pearson Education		
	Harris	and systems Perspective			
3	Jan M Rabaey	Digital Integrated Circuits- A	Pearson Education		
		design Perspective			
4	Douglas Pucknell,	Basic VLSI design	PHI		
	Kamran Eshraghian				
5	Wayne Wolf	Modern VLSI Design	Prentice Hall		

Reference Books for further study								
S. No.	Author	Title of Books	Publishers					
1	J Bhaskar	VHDL Primer	PHI					
2	Eugene D. Fabricius	Introduction to VLSI Design	Mc. Graw Hill					
			Education					
3	Stephen Brown,	Fundamental of Digital Logic with	Mc Graw Hill					
	Zvonco Vranesic	VHDL design	Education					

Reference Books for further study

(EX624) CONSUMER ELECTRONICS

1.AIM:

1. To know penetration of electronics applications in various fields of society.

2. Appreciate influence of electronics in consumer, entertainment, automobile applications.

2. COURSE OBJECTIVES:

- Many of the domestic and office gadgets at home and around are electronically controlled. This course on Consumer Electronics will enable students to understand the underlying working principles of many of the electronic devices used in the consumer industry. The student will be ableto apply this knowledge to carry out maintenance, fault finding, repairs and servicing of such devices along with laboratory equipments
- The students will able to
 - 1. To provide fundamental knowledge about the various gadgets of Consumer electronics

3. PRE-REQUISITES:

Students should know

- 1. Concepts of Basic Electronics
- 2. Concepts of Electronic Instrumentation
- 3. Concept of communication and computers

4. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Course cod	le &	Peri	ods/V	Veek	Total	Examination Scheme				
course ti	tle	(iı	n hou	rs)	Credits				Total Marks	
EX624 Cons	sumer	L	Т	P	C	TH	TM	TW	PR/OR	
Electron	ics	03	-	02	05	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

1. Understand the electronics engineering concepts used in consumer electronics

2. Identify the working of various consumer electronic devices used as office gadgets

3 Examine the working of various consumer electronic devices such as washing machine, AC's,

Microwave ovens with sketches of the block diagram.

4. Discuss the need of preventive maintenance and safety measures in various electronic appliances

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentat ion& Testing	Engg. Practices for Society, Sustainabilit Environment	Project Management	Life -long Learning
CO1	2	2	2	0	0	0	3
CO2	2	1	2	2	2	0	3
CO3	2	0	1	2	2	2	3
CO4	3	3	3	3	2	0	3

6. Mapping Cour	se Outcomes	with E	Program	Outcomes
-----------------	-------------	--------	---------	----------

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	3

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN							
M = Marks	Thr = Teaching hours	CO = Course Objectives					
Unit			Μ	Th r	СО		
1 Electronic	ally controlled l	ow power Home appliances	16	10	CO1,CO 2		
 1.2 Digital diagram of C 1.3 Digital thermometer 1.4 Digital V weighing matrix 	Calculator:- S Calculator, Worki Thermometer:- , Working, Adva Veighing Machin achine, Working	block diagram, working tructure of Calculator, Block ng , Block diagram of Digital ntages ,Applications nes:- , Block diagram of Digital g, Applications, Comparison of reighing Machines.					
2 Electronic	ally controlled I	High power Home appliances	22	14	CO1,CO 3		
microwaves working pr diagram, Saf 2.2 Washin controller for and washin machinesS washing mac 2.3 Air con Components Conditioning ,Introduction and Split Air 2.4 Refrige Refrigeration 2.5 Voltage Need for v Specification	over convention inciple, Microw ety instructions f g Machines:- r washing maching g cycle. Introd Gemi automatic chines. ditioning :- Introd of Air Condit g systems, All air to unitary and G conditioner erators:- Refrigon System, Domes Stabilizers:-Intro oltage stabilizer as,Working of base	working principle, Electronic nes, Washing machine hardware duction to types of washing , Fully automatic, Fuzzy logic roduction to Air Conditioning, ioning systems, All water Air r Air conditioning systems Central Air conditioning systems eration ,Vapour Compression tic Refrigerator roduction to voltage Stabilizer, r, Need for voltage stabilizer, sic Series stabilizer.					
surveillance	appliances	Intertainment,Commercial and	18	12	CO1,CO 3		
Features of ty 3.2 Bar cod formats(UPC	anical specificati ypical Electronic les:- Introduction	Surveillance system to Bar codes, Bar code rcode scanner and decoder					

3.4Metal detector :- Working and Applications(<i>LEVEL4</i>)			
4 Electronically controlled Communication appliances	13	08	CO1,CO 3
4.1 Cordless phones:- Transmitter section and Receiver Section4.2 EPABX System :- Block diagram and working			
4.3 Public Addressing System(LEVEL4)			
5 Maintenance and safety Precautions	06	04	CO4
5.1 Electricity in home, Dangers of electricity, Safety Precautions, Hazards associated with electric current voltage, Approaches to prevent accidents, Fire prevention and fire fighting.			
Total	75	48	-

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. Specification table for theory/ macro-lesson plan

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Electronically controlled low power Home appliances	10	16
2	Electronically controlled High power Home appliances	14	22
3	Electronically controlled Entertainment ,Commercial and	12	18
	surveillance appliances		
4	Electronically controlled Communication appliances	08	13
5	Maintenance and safety Precautions	04	06
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Use of Test and Measurement Instruments and Interpretation of manuals of CRO,Multimeter,Power Supply, and Function Generator	
2	Identification and testing of different types of components such as Resistors,Capacitors,Diodes,Transistors,Switches and Relays	
3	Soldering and Desoldering	
4	Explore the various functions of Washing machines and locate various sensors used in that washing machines	
5	Check the wiring of ACs and explore all functions	
6	Test various functions of Microwave ovens	
7	Explore settings Digital Cameras	
8	Demonstration of Photocopy Machine	
9	Demonstration of EPABX system	

ELECTRONICS AND COMMUNICATION ENGINEERING CURRICULUM

10	Demonstration of CCTV Or simple Public address system		
		Total	25
No	Class room Assignments		Marks
1	At least 2 assignments		
No	Tutorial Exercise		Marks
1	NIL		
		Total	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers	
1	S.P.Bali	Consumer Electronics	Pearson Education	
2	B.R. Gupta and V.	Consumer Electronics	New Ag	e
	Singhal		International	
			Publisher	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	J S Chitode	Consumer Electronics	Technical
			Publications Pune

(EX 603) PROJECT

1. AIM

This is intended to integrate several skills and competencies which have been developed in the students during his/her course of study and gets manifested through this project.

2. COURSE OBJECTIVES:

The students will able to:

- i. Cultivate the systematic methodology for problem solving using acquired technical knowledge &skills, and to enhance the generic skills & professional skills
- ii. Develop problem solving, analysis, synthesis and evaluation skills.
- iii. Encourage teamwork.
- iv. Improve students' communication skills through project reports and presentations of their work.

3. PRE-REQUISITES:

- i. Basic Engineering Skills
- ii. Electronics & allied Courses

4. TEACHING AND EXAMINATION SCHEME

Semester	Ι									
Course co	de &	Peri	iods/V	Veek	Total		Exan	nination	n Scheme	
course ti	tle	(iı	n hou	rs)	Credits	The	ory	Pra	actical	Total
						Ma	rks	Μ	[arks	Marks
(EX 60	3)	L	Т	P	C	TH	TM	TW	PR/OR	
PROJE	CT	-	-	06	06	-	-	100	50	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Identify, analyze & define the problem
- 2. Apply acquired knowledge of engineering to execute solution
- 3. Develop leadership & teamwork skills to design & execute hardware & related software
- 4. Compile the relevant data in the form of a report and defend the project

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	2	-	-	-	-	3	2

6. Mapping Course Outcomes with Program Outcomes

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	3
CO2	3	3
CO3	3	3
CO4	3	3

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

The following are some of the suggested activities which the student has to undertake (which may slightly differ depending on the project chosen) during the project work. In so doing some process related and project related skills need to be evaluated.

- Selection/Identification of project Work by market survey/industrial survey.
- Project Proposal
- Market survey for product sales & economic viability of product (for entrepreneurship)
- Costing of the project/product i) Capital costs ii) Material & production cost
- Design of project to obtain desired output.
- Procurement of components & equivalents.
- Working skill of fabrication.
- Testing of product
 - i. Drafting
 - ii. Sketching

(AC102) INDIAN CONSTITUTION

1. COURSE OBJECTIVES:

As a proud citizen of this country every student must be aware about the Indian Constitution to appreciate the provisions available for the people of this biggest democracy in Indian Constitution so that the youth of this country plays active role in development of the country by participating in the formation of sensitive and proactive Government at national and state level. This course intends to make students aware about various constituents of the Indian Constitution.

2. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Peri	ods/V	Veek	Total		Exa	aminati	on Schem	e
course title	(iı	n hou	rs)	Credits		eory arks		actical Iarks	Total Marks
(AC102) INDIAN	L	Т	P	С	TH	TM	TW	PR/OR	
CONSTITUTION	2	-	-	2	-	-	-	-	-

3. Course Content

 Unit 1 – The Constitution - Introduction The History of the Making of the Indian Constitution Preamble and the Basic Structure, and its interpretation Fundamental Rights and Duties and their interpretation State Policy Principles
Unit 2 – Union Government
• Structure of the Indian Union
• President – Role and Power
Prime Minister and Council of Ministers
Lok Sabha and Rajya Sabha
Unit 3 – State Government
• Governor – Role and Power
Chief Minister and Council of Ministers
State Secretariat
Unit 4 – Local Administration
District Administration
Municipal Corporation
• Zila Panchayat
Unit 5 – Election Commission
Role and Functioning
Chief Election Commissioner
State Election Commission

4. Suggested Learning Resources:

Title of Book Author Publication

1. Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi,2008

2. The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3. Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Third 2018 edition

5. Suggested Software/Learning Websites:

a. https://www.constitution.org/cons/india/const.html

b. http://www.legislative.gov.in/constitution-of-india

c. https://www.sci.gov.in/constitution

d. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-ofindia/