

		200	5 - APP	LIEI	MECHA	ANICS	5 - [n n <u>n</u>
Teachin	Progressive			Examination Schedule (Marks)						
Lectures	Practical	Credits	Asses	sment	1	heory	P	ractical	Ex.	Total
3	2	5	25	25	3Hrs.	1(00	-	T	150
Pre-re	quisite	Source			Theory	Test	Total	TW	PR	Gr Total
N	fil	CVL	Seme	ester	. 75	25	100	25	-	125

RATIONALE: - For any Engineer, Applied Mechanics is vital to understand the fundamental principles and concepts, which form the underlying basis for engineering design. Its applications in Engineering are infinite viz.-bridges, dams, ships, rockets, missile, artificial satellites, robotics etc, all owing their existence to Mechanics. Even in daily life Mechanics is self-evident. Since the technician will be required to deal with many basic Engineering structures in the course of his employment in the industry this course in Applied Mechanics adequately lays emphasis on the required vital topics.

COURSE CONTENTS	Hrs	Mks
1. FUNDAMENTAL CONCEPTS	2	4
Classification of mechanics: - Static, dynamic (Kinematics & Kinetics). S.I. system of units: - Basic units LMT, inter-conversion between units, inter- conversion between prefixes of units.		Ŧ
Concept of rigid body and de-formable body. Vectors and Scalar: - Definition, difference between vector quantity and scalar		
quantity, representation of vector quantity in magnitude & direction (meaning of sense of a vector), types of vectors with examples: - Free, sliding and fixed. Addition of vectors: - Law of Parallelogram, law of triangles, Polygon law, subtraction		
	4	8
 2. FORCE Definition and units. Specifications of force as a vector: - Magnitude, direction and point of application. Concept of mass and weight, units. Types of force with examples- Direct, remote action e.g. Gravity force, magnetic force, electric force. Effect of forces on a body- External, internal. Classification of forces- Concentrated, distributed over an area, distributed over a volume, uniformly distributed load, uniformly varying load, equivalent-force. Principle of transmissibility, system of forces: -Collinear and non-collinear, concurrent and non-concurrent, coplanar and non-coplanar, parallel and non-parallel. 		
3. MOMENTS AND COUPLES Definition and unit of a moment. Sign conventions – Clockwise and anti-clockwise. Moment as a vector: - Magnitude, direction (Right hand thumb rule). Definition and units of a couple. Characteristics of a couple.	2	4
4. RESOLUTION AND COMPOSITION OF FORCES Resolution of a force. (Hint – Reverse of law of Parallelogram of forces and Polygon of forces) Rectangular components: -Resolution of a force into two rectangular components, independence of each rectangular component. Resolution of a force into force and couple.	7	16

HUMAN RESOURCE AND CURRICULUM CELL, DIRECTORATE OF TECHNICAL EDUCATION, _ SECOND EDITION, 2000

_

esultant of a force - Definition, Parallelogram law, Triangle law, Resultant of two mutually perpendicular forces, Polygon law, resultant of non-concurrent coplanar	I	
force system by Varignon's theorem, resultant of parallel forces.		
	8	24
tatement of Newton's third law. Concept of free body diagram- Reactions of various supports: -Flexible-cable, smooth, rocker, roller supports, pinned, hinged supports, link supports and fixed support, drawing of F.B.D. "oncept of equilibrium. Definition of equilibrium and its comparison with resultant. Conditions of equilibrium for co-planar force system. Lami's theorem. Reaction of beams subjected to u d l and concentrated loads only (simply supported, hinged and roller support overhangs)	-	
FRICTION	1	16
 Definition. Advantages and disadvantages. Types of friction -Static, dynamic - Sliding, rolling. Coulomb's law of static-friction: -Coefficient of friction, angle of friction (cone of friction), angle of repose. Equilibrium of bodies involving friction: -Blocks on horizontal & inclined plane, ladder friction, wedge friction, rope friction (coil friction - no derivation), screw friction (no derivation). 		
THE TRACTOR OF THE AD MOTION	7	20
Sinematic variables – Definition & units - Displacement and distance, velocity and speed, uniform and average velocity, uniform acceleration and retardation. roblems based on kinematic equations for uniform acceleration: - $(1 - u + at; S = ut + 1/2 at^2; V^2 = u^2 + 2as;$		
elocity – time diagrams. Motion under gravity.		
	5	8
Centroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids.	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Totał	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces.	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces.	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces.	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces Torone Lamit theorem	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces To prove Lami's theorem. C. if fiction for any three surfaces and angle of repose	42	100
entroid of simple regular areas. (No derivation), Centroid of built up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem.	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam.	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. RAPHICAL ANALYSIS	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-éfficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. RAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces.	42	100
entroid of simple regular areas. (No derivation), Centroid of built up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. RAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces. Determination of resultant of coplanar non-concurrent forces and parallel forces.	42	100
entroid of simple regular areas. (No derivation), Centroid of built up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces. To prove Lami's theorem. Co-éfficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. RRAPHICAL ANAL VSIS Determination of resultant of coplanar concurrent forces. Determination of resultant of coplanar non-concurrent forces and parallel forces. Determination of centroid of built up lamina.	42	100
entroid of simple regular areas. (No derivation), Centroid of built up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. IRAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces. Determination of centroid of built up lamina. REFERENCE BOOKS	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of resultant of coplanar concurrent forces. Determination of resultant of coplanar non-concurrent forces and parallel forces. Determination of centroid of built – up lamina. EFERENCE BOOKS Fundamentals of applied Mechanics by Dadhe, Jamdar, walavaikar	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. RAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces. Determination of resultant of coplanar non-concurrent forces and parallel forces. Determination of centroid of built – up lamina. EFERENCE BOOKS Fundamentals of applied Mechanics by Dadhe, Jamdar, walavaikar Applied Mechanis by R. S. Khurmi.	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Polygon law of forces. To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. BRAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces. Determination of centroid of built – up lamina. REFERENCE BOOKS Fundamentals of applied Mechanics by Dadhe, Jamdar, walavaikar Applied Mechanis by R. S. Khurmi. Mechanics (S.I. Version) by J.D. Johnwilley	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Prolygon law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. RAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces. Determination of centroid of built – up lamina. REFERENCE BOOKS Fundamentals of applied Mechanics by Dadhe, Jamdar, walavaikar Applied Mechanis by R. S. Khurmi. Mechanics (S.I. Version) by J.D. Johnwilley Applied Engineering Mechanics by Jensen A. McCraw Hill. Applied Engineering Mechanics by Jensen A. McCraw Hill.	42	100
 Introid of simple regular areas. (No derivation), Centroid of built	42	100
Introid of simple regular areas. (No derivation), Centroid of built	42	100
entroid of simple regular areas. (No derivation), Centroid of built – up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Triangle law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces. Verification of relation for any three surfaces and angle of repose To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Betermination of reactions in a beam. GRAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces. Determination of centroid of built – up lamina. REFERENCE BOOKS Fundamentals of applied Mechanics by Dadhe, Jamdar, walavaikar Applied Mechanis by R. S. Khurmi. Mechanics (S.I. Version) by J.D. Johnwilley Applied Engineering Mechanics by Jensen A. McCraw Hill. Applied Mechanics S.I. Edition, Walkar J. D. English UNI Press. Applied Mechanics by S. Ramamrutham. Applied Mechanics Vol. I. R. C. Patel and B. M. Patel. Applied Mechanics Vol. I. R. C. Patel and B. M. Patel.	42	100
entroid of simple regular areas. (No derivation), Centroid of built up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces To prove Lami's theorem. Co-difficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of resultant of coplanar concurrent forces. Determination of resultant of coplanar non-concurrent forces and parallel forces. Determination of centroid of built up lamina. EFFERENCE BOOKS Fundamentals of applied Mechanics by Dadhe, Jamdar, walavaikar Applied Mechanics by R. S. Khurmi. Mechanics (S.I. Version) by J.D. Johnwilley Applied Mechanics S.I. Edition, Walkar J. D. English UNI Press. Applied Mechanics V. I. R. C. Patel and B. M. Patel. Applied Mechanics by A. Basu.	42	100
entroid of simple regular areas. (No derivation), Centroid of built up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces. Verification of rolygon law of forces. Verification of riction for any three surfaces and angle of repose To prove Lami's theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Determination of reactions in a beam. RAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces. Determination of centroid of built up lamina. REFERENCE BOOKS Fundamentals of applied Mechanics by Dadhe, Jamdar, walavaikar Applied Mechanics by R. S. Khurmi. Mechanics (S.I. Version) by J.D. Johnwilley Applied Engineering Mechanics by Jensen A. McCraw Hill. Applied Mechanics Vol. J. R. C. Patel and B. M. Patel. Applied Mechanics by A. R. Basu. Detartice Staveling Mechanics by A. R. Basu.	42	100
entroid of simple regular areas. (No derivation), Centroid of built up (composite) areas; C.G. of simple regular filled solids. (No derivation); C.G. of built-up (composite) filled solids. Total RACTICALS Verification of Parallelogram law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces. Verification of Polygon law of forces. Verification of right in theorem. Co-efficient of friction for any three surfaces and angle of repose To prove Lami's theorem. Co-efficient of frictions in a beam. BRAPHICAL ANALYSIS Determination of resultant of coplanar concurrent forces. Determination of resultant of coplanar non-concurrent forces and parallel forces. Determination of centroid of built up lamina. EFERENCE BOOKS Fundamentals of applied Mechanics by Dadhe, Jamdar, walavaikar Applied Mechanis by R. S. Khurni. Mechanics (S.I. Version) by J.D. Johnwilley Applied Engineering Mechanics by Jensen A. McCraw Hill. Applied Mechanics S.I. Edition, Walkar J. D. English UNI Press. Applied Mechanics S. Ramamrutham. Applied Mechanics by S. Ramamrutham. Applied Mechanics by S. Ramamrutham. Applied Mechanics by K.L. Kurma. Engg. Mechanics by A. R. Basu. 0. Statics by Mokashi.	42	100

WHAN DESCHOPE AND CHREICHI HM CELL, DIRECTORATE OF TECHNICAL EDUCATION, SECOND EDITION, 2000

-