Analysis.

Proposed syllabus: M. O.S.; Dec 2006

.

Proposed Syllabus of Mechanics of Structures' in Semester pattern (4026) (in lieu of Theory of Structures – Tand Theory of Structures – II of MPEECS)

Semester: V

Teachir	ig Scheme			Examinat	ion Scheme		
Lecture	Practical	Duration of Paper	Theory Marks	Test Marks	Practical/Oral	Term- Work	Total
05		03 hrs.	75	25			100
Comparison Table of Course Contents:							

Comparison Table of Course Contents:

SN	Br. Chapter Io.		Hrs.	Marks	
Т	heory of Structures - 1 (Jones		Existing (in I	MPEECS)	-
1)	Flitched Boards		64	100	-1
21	Combined beams	···	08	12	
31	Complete bending and axial loading	·	10	16	
	Complex stress systems		14	20	-
-1	Influence lines for beams		08		-1
101	Rolling loads		07	12	4
6)	Stability of structures		07	12	4
7)	Torsion of circular shafts		10	12	4
The	eory of Structures - II (4023)		40	16	-
1)	Slope and deflections		.48	100	1
2)	Fixed beams of uniform sections		10	22	
3)	Moment distribution method		10	22]
4)	Columns		12	24	1
5)	Three hinded arches		08	16	
			ūō	16	
Mec	hanic of Structure	Pro	posed (for S	emester pattern)	
1).	Flitched Rese		80	75	
·/ /]	Combined Beams		10	09	
- <u>/</u>	Combined bending and axial loading		10	00	
<u>.</u>	Complex stress systems		15	09	
2	Slope and deflections		10	15	
2	Fixed bearing of uniform sections		10	09	
2-1	Moment distribution method		15	09	
	Columns		10	15	
			10	09	

Approved .

Chapter: 1	Flitched Dealins					
O h	Flitched Beams			Hrs.:10.	Marks: 09	
	0	9	(4026)		······	
	Ana ~ m &	1				
• *	Λ. Ο	10	STALCFUYES			
				Proposed sy	llabus: M. O.S.; Dec 200	Ŷ
					" I I O C D - 200	i.c

Definition of flitched beams, flitchted beam theory, transformed section and modular ratio. Moment of resistance of composite section, permissible stresses, stress distribution across composite section. Analysis of beams of composite sections, symmetrical and asymmetrical above the neutral axis. Shear connectors.

Chapter: 2 Combined bending and axial loading	Hrs.:10.	Marks: 09
---	----------	-----------

Typical cases of structure subjected to bending and axial loading. Eccentricity about one principal axis, standard cases of stress distribution. Limits of eccentricity for uniform stress distribution system, middle third rule, middle quarter rule. Eccentricity about both principal axes. Limits of eccentricity, core section for different standard sections. Extreme intensities of stress. Equation of zero -stress line.

Ĩ		a malar atraca systems	Hrs.:15.	Marks: 15	5
	Chapter: 3	Complex stress systems		1	

Uni-axial stress system, resolution of stress on oblique plane, magnitude and direction of oblique stress, graphical solution using Mohr's stress circle, location of principal plane and planes of maximum shear. Two dimensional stress system, normal and tangential component stress on oblique plane, magnitude and direction of resultant stress, maximum obliquity of the resultant stress, schematic representation. Construction of Mohr's circle of stress, stresses on mutually perpendicular oblique planes. Location of principal planes and planes of maximum shear. General two-dimensional stress system. Normal and tangential components of resultant stress, maximum obliquity of resultant stress. Location of principal planes and planes of maximum shear. Principal stress and maximum shear stresses, Mohr's circle of stress. Pricipal stresses in beams.

ſ				11	Marke: 09	-
	Chapter: 4	Slope and d	eflections	Hrstu.	Marks. 00	ł

Formulation of differential equations of elastic line for a beam subjected to bending. Derivation of formula for slopes and deflection for standard cases. Macaulay's method (cubic equations are not to be considered) simple problems B.M.D and S.F.D

	d uniform contions	Hrs 10	Marks: 09	į
Chapter: 5	Fixed beams of uniform sections	111310.		1

Determination of fixed end moments for the beams carrying point loads and U.D.L on full part span. Construction of shear force and bending moment diagrams.

Moment distribution method	Hrs.:15	Marks: 15
		Approved
-		tong and
-	Moment distribution method	Moment distribution method Hrs.:15

Proposed syllabus, M. O.S., Dec 2006

Definition, stiffness, relative stiffness, distribution factor. Sign conventions. Analysis of continuous beam uniform section, supports at the same level and carrying point load and U.D.L over the entire spans. Analysis of single storied single span portal frame carrying point load or U.D.L over entire span (only non-sway analysis).

			1
Chapter: 7	Columns	Hrs.:10,	Marks: 09

Types of columns, deflection, short and long columns. Buckling of columns under axial loading. Euler's formula for crippling load (derivation not needed). End conditions, effective length, and slenderness ratio. Limitations of Euler's formula. Rankine's formula. Column formula as per IS: 800 - 1984.

REFERENCE BOOKS

- Theory of Structures by S. Ramamrutham. 1)
- 2) Mechanics of Structures Vol I and II by S.B Junarkar and Alvai
- Theory of Structures by O.P Jain and B.K. Jain Analysis of Structures by B.C. Punmia 3)

÷ ..

- 4)
- 5) Strength of Materials by B. B.Lord
- 6) Mechanics of Materials by E. S. Herman
- 7ý Strength of Materials by Singer
- 8) Strength of Materials by Warnock
- 9) Theory of Structures by Smith
- 10)
- Strength of Materials by S. Timoshenko Theory of Structures by S. Timoshenko and Young 11)
- Theory of Structures by S. Ramamrutham 121