----

## 4037 POWER ENGINEERING I

| Teaching Schedule Per Week |                             |        | Progressive<br>Assessment |  |        | Examination Schedule (Marks) |       |         |               |          |    |  |
|----------------------------|-----------------------------|--------|---------------------------|--|--------|------------------------------|-------|---------|---------------|----------|----|--|
| Lectures                   | LecturesPracticalCredits325 |        | 25 25                     |  |        | Theory                       |       |         | Practical Ex. |          |    |  |
| 3                          |                             |        |                           |  | 3 H.   | 3 Hrs. 100                   |       | 25 oral |               | 175      |    |  |
| Pre-requisite              |                             | Source | Semester                  |  | Theory | Test                         | Total | TW      | PR            | Gr Total | 1  |  |
| Nil                        |                             | MEC    |                           |  | 75     | 25                           | 100   | 25      | -             | 125      | 1. |  |

RATIONALE: - Heat power is used in Industries to a large scale. Hence it is necessary to study thermal properties, processes, basic thermodynamic laws & heat engines concerned with generation of power. Energy & its conversion from one form to another is also important; hence study of different forms of energy & its conversion is essential. Diploma pass-outs working in thermal power plants or industries require the knowledge of steam generation along with working of prime movers and other auxiliary equipment.

| COURSE CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs | Mks |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| <ol> <li>UNITS &amp; DIMENSIONS</li> <li>Units of pressure, volume &amp; temperature.</li> <li>Units of work, power, energy.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                  | 2   | 0   |
| <ol> <li>SOURCES OF ENERGY:</li> <li>Energy and its forms</li> <li>Brief description of different forms of energy. a) Fossil, b) Hydraulic, c) Wind, d)<br/>Solar, e) Geothermal, f) Bio-gas.</li> </ol>                                                                                                                                                                                                                                                                                                                                                 | 2   | 6   |
| <ol> <li>FUELS &amp; FUEL COMBUSTION:</li> <li>Classification of fuels, 2. Calorific values of fuel. 3. Calculation of Air requirement,<br/>Air fuel ratio. 4. Bomb &amp; Boy's gas calorimeter. Orsat apparatus for flue gas<br/>analysis. Volumetric &amp; Gravimetric analysis. Conversion from volumetric to<br/>gravimetric and vice versa</li> </ol>                                                                                                                                                                                               | 4   | 8   |
| <ol> <li>GAS LAWS &amp; THERMODYNAMICS</li> <li>Gas Laws- Boy's laws, Charles law, Gay-Lussac, law and Avogadro's law, Laws of<br/>Thermodynamics. Zeroth law of Thermodynamics. First law of Thermodynamics;<br/>Second law of Thermodynamics; Characteristic gas equation</li> <li>Universal gas constant, Specific heat, internal energy., Thermodynamic processes</li> <li>Representation of processes on P-V and T-S diagram, Calculation of work done,</li> </ol>                                                                                  | 8   | 18  |
| heat transferred, change in internal energy, P,V,T, relationship.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |
| 5. PROPERTIES OF STEAM<br>Formation of steam, Sensible heat, Latent heat., Enthalpy, Internal energy, Dryness<br>fraction or quality of steam. Steam calorimeter, Study of steam tables, use of steam<br>tables.                                                                                                                                                                                                                                                                                                                                         | 4   | 1   |
| 6. VAPOUR PROCESSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6   | 1   |
| <ol> <li>Definition of Entropy, .2. Entropy of water and steam, 3 Temp-entropy and enthalpy-<br/>entropy chart (Mollier diagram). 4 Vapour cycles. 5. Carnot cycle. 6. Rankine cycle.</li> <li>Modified Rankine cycle. Calculation of work done &amp; efficiency of the above cycle</li> </ol>                                                                                                                                                                                                                                                           |     |     |
| <ol> <li>BOILERS, MOUNTINGS &amp; ACCESSORIES</li> <li>Principles of Steam Generation, 2. Classification of Boilers. 3. Study of medium pressure Boilers (construction, working &amp; application): a) Cochran Boiler, b) Babcock &amp; Wilcox Boiler, c) Lancashire Boiler, d) Locomotive Boiler.</li> <li>Study of high pressure Boilers (construction, working and application) a) La Mont Boiler, b) Loeffler Boiler, c) Velox-Boiler, d) Benson Boiler, e) Marcet Boiler.</li> <li>Study of Boiler draughts. classification of draughts.</li> </ol> | 12  | 2   |
| 6. Study of Boiler mountings (construction & working): a) Safety valves, b) water level<br>Indicator, c) Pressure gauge, d) Feed check valve, e) Blow off Cock, f) Fusible plug,<br>a) Steam ston valve                                                                                                                                                                                                                                                                                                                                                  |     |     |

g) Steam stop valve.
7. Study of Boiler Accessories (construction and working) a) Feed water pumps,
b) Steam injector, c) Economiser, d) Super-heater, e) Air pre-heater.

.

## 8. AIR COMPRESSORS,

1. Uses of compressed Air, 2. Classification of Compressors.

3. Reciprocating Air Compressors (no derivation of formula), Single acting & double acting compressors, Single stage & multi-stage compressors. Inter-cooling & after

- cooling, Conditions for maximum efficiency, Volumetric efficiency 4. Effect of clearance volume, Free air delivered (no derivation of formulae)
- 5. Construction and working principles of Rotary Air Compressors.
- Centrifugal compressors, Axial flow compressor, Vane type compressor. 6. Applications of Compressed air viz. pneumatic tools - vibrator, rock drill, chipping
- hammer etc, Compressed Air motor (no analytical treatment), Fans & Blowers.

Total

## TERM WORK:-

The term work shall consist of the following:-

- 1. Study of fire tube Boiler.
- Study of boiler mountings 3.
- Study of Bomb calorimeter. 5.
- Study of Orsat apparatus 7.
- Study of non-conventional power plant 9.
- (wind, hydraulic, geothermal tidal etc.)
- Study of water tube Boiler. 2. Study of boiler accessories. 4.
- Study of Boy's gas calorimeter. 6.

100

48

- Study of steam calorimeter 8.
- 10. Trial on Air compressors.

## REFERENCE BOOKS

1. Elements of Heat Engines Vol. I & II

- 2. Elements of Heat Engines
- 3. Thermal Engineering
- 4. Heat Engines
- 5. Thermodynamics & Heat Engines Vol. I
- 6. Heat Engines

by Patel & Karamchandani. by Pandya and Shah. by P. L. Ballancy by R. S. Khurmi by R. Yadav. by Wasandar & Patil.

