Teachin	g Schedule D		3 - APPLIE			****	on Cabad	1. 1.		
Lectures	Teaching Schedule Per Week		Progressiv Assessmen		Examination Schedule (Ma					
3	4	Credits 7			Theory 3 Hrs 100		Practical Ex.		Total	
			25 2	25 31	lrs	100	50		200	т
	quisite	Source	Somostar	Theory	Test	Tota	I TW	PR	Gr Tota	al
42		INC	Semester	75	25	100		50	175	
Rationale: T Basic Electro	his subject is onics and son	follows up one more devi	of Basic Electro ices used for si	onics. It de gnal condi	ils with o ioning is	circuits 1 Instru	built usin mentation	g devid system	ces studied ns.	l in
		CC	URSE CON	TENTS					Hrs	Μ
1. HYBRII	D EQUIVA	LENT CIE	CUIT OF A	TRANSI	STOR				4	1
paramet Express output in	ers from the	characteri ige gain, cu No derivati	efinitions of h stics; Hybrid rrent gain and ons); Compar B, and CC.	equivalen 1 power g	circuit in; Exp	of CE ression	amplifie is for inp	r; out and		
2. COUPL	ED AMPL	FIERS							4	1
RC Cou Amplifi amplifie disadvar	pled Ampli ers; A typic ers; Compar ntages	fier; Transf al circuit ar ison of freq	ages, expressi ormer Couple ad operation u uency respon	ed Amplif ising BJT	iers; Di for eacl	rect Co	upled above t	ypes o	f	
3. POWER	R AMPLIFI	ERS							4	
A, class circuit u	B push pull	and class (r each of th	plifiers; Type C amplifiers v e above; Con distortion.	with the he	lp of w	avefor	ns; A ty	oical	i	
4. FEED B	ACK AMP	LIFIERS .	AND OSCIL	LATORS	· · · ·	11.	and		8	1
negative problem shunt, c each of oscillati RC phas	e feedback a us); Types o urrent series the above ty ons; Barkha se shift osci	nd express f negative f s, current sh pes). Use c lusen's crite llator, Wein	ept of positiv ion for gain w eedback used nunt (a typica of positive fee eria; A typica n bridge oscil	vith feedba in amplif l circuit an edback in l circuit u	ick (sim iers: vo id opera oscillato sing BJ	ple nui Itage se Ition us ors; Ree IT and o	merical tries, vol ting BJT quirement peration	tage for its for	f,	
	WENTIAL A							2	4	
(No der		boratory m	IT and operat ethod of deter						L	
6. MODU	LATION A	ND DEMO	DULATION	N .					10	1
Frequer AM wa circuit; SSB teo spectrui	icy spectrum ve; Concept Meaning an chnique; The	n of the AN of generat d descriptions ory of FM (wave; Con	for modulatic I wave; Repre- tion of AM an on of single s and PM; Mat nparison of A Simple diada	esentation d operatio ide-band a thematical M and F	of AM; n of col nd adva represe M; Gen	Power lector i intage o ntation eration	relation nodulate of using and free of FM u	s in th d the juency ising		

- ----

ļ,

	14	30
 7. OPERATIONAL AMPLIFIERS Block diagram and description; Characteristics of an ideal opamp; Concept of virtual ground; Advantages of opamps; Electrical parameters and specifications of a typical opamp 741; Applications of opamps like active filters (single order Butterworth high pass, low-pass, band pass and band stop), inverting amplifier, differential amplifier, voltage to current converter, current to voltage converter, charge amplifier, chopper amplifier, chopper stabilised amplifier, chopper carrier amplifier (AM and FM), voltage to frequency converter, frequency to voltage converter, Integrator, differentiator. 	48	100
Total		

LIST OF PRACTICALS:

- 1. Determination of the hybrid parameters of a given transistor using CE characteristics. Determination of the hybrid parameters of a given transistor using OE characteristics.
 To calculate the gain and plot the frequency response of a RC coupled amplifier.
 To calculate the gain and plot the frequency response of a transformer coupled amplifier.
 To calculate the gain and plot the frequency response of a direct coupled amplifier.
 To calculate the gain and plot the frequency response of a direct coupled amplifier.
 To calculate the gain and plot the frequency response of a direct coupled amplifier.
 To estudy the operation of a class A power emplifier and calculate its efficiency.

- 10 calculate the gain and plot the frequency response of a direct coupled amplifier.
 To study the operation of a class A power amplifier and calculate its efficiency.
 To study the operation of a class B push-pull amplifier and calculate its efficiency.
 To study the voltage series type of negative feedback amplifier and calculate its gain with and without feedback

8. 10 study the operation of a RC phase shift oscillator using B31.
9. To study the Wein bridge oscillator using BJT/Opamp.
10. To study the operation of the differential amplifier and calculate its CMRR.
11. To build and test the following circuits using opamps: a) Inverting and non-inverting amplifier
11. To build and test the following circuits using complifier c) Integrator and differentiator To study the operation of a RC phase shift oscillator using BJT. 1.10 Duffer and lest the following circuits using opamps: a) inverting and non-inverting amplifier
b) Buffer c) Differential amplifier d) Summing amplifier e) Integrator and differentiator
12. To plot the frequency response of active filters like: Low pass filter, High pass filter, Band pass

- filter.

REFERENCE BOOKS:

1. Electronic Devices and Circuits by Allen Mottershead.

Electronic Principles by Malvino.

4. Electronic Devices and Circuits Theory by Robert Boylestead and Louis Nashelsky. 3. Integrated Circuits by Botkar.

Electronic Devices and Circuits Tricory by Robert Display
 Electronic Communication Systems by George Kennedy.

- Opamps and Linear Integrated Circuits by R.Gayakwad.

