|                            |           | 4222 - 0 | COMPU       | TER | ORGAN  | ISAT                         | ION - 1 | Π             |    |         |  |
|----------------------------|-----------|----------|-------------|-----|--------|------------------------------|---------|---------------|----|---------|--|
| Teaching Schedule Per Week |           |          | Progressive |     | 2      | Examination Schedule (Marks) |         |               |    |         |  |
| Lectures                   | Practical | Credit   | Assessment  |     | t      | Theory<br>3Hrs 100           |         | Practical Ex. |    | Total   |  |
| 4                          | -         | . 4      |             |     | 3Hr    |                              |         |               |    | 125     |  |
| Рте-те                     | quisite   | Source   |             |     | Theory | Test                         | Tota!   | TW            | PR | Gr Tota |  |
| 4220                       |           | COM      | Semester    |     | 75     | 25                           | 100     |               | -  | 100     |  |

Rationale: This course is a continuation of the earlier course in Computer Organisation & deals with Memory & I/O Organisation. Besides Basic Organisation, Interconnection of the above module to the CPU & transfer of data is also dealt with elaborately. A brief study of Pipeline, Vector & Multiprocessing is also introduced.

| COURSE CONTENTS                                                                                                                                      |     | Mks |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|
| 1. MEMORY ORGANISATION                                                                                                                               | 8   | 10  |  |
| Main Memory, Ram & Rom chips, Memory Address Map, Memory Connection to the CPU, Auxiliary Memory, Floppy Disks, Hard Disks, Magnetic Tapes, CD ROMS. |     |     |  |
| 2. RAID TECHNIQUES                                                                                                                                   | 8   | 10  |  |
| Associative Memory: Hardware Organisation, Match Logic, Read Operation, Write Operation.                                                             | x v |     |  |
| 3. CACHE MEMORY                                                                                                                                      | 12  | 20  |  |
| Associative Mapping, Direct Mapping, Set Associative Mapping, Writing into Cache.                                                                    |     |     |  |
| 4. VIRTUAL MEMORY                                                                                                                                    | 12  | 20  |  |
| Space and Memory Space, Memory Allocation and Mapping. Base & Segment<br>Registers, Paging, Page Replacement, Memory Segmentation.                   |     |     |  |

1

| SYLLABI OF COURSES FOR DIPLOMA PROGRAMME IN COMPUTER ENGINEERING, LEVEL IV                                                                                                                   | /& V | 18  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 5. INPUT - OUTPUT ORGANISATION<br>Input Output Interface: I/O bus and Interface Modules, I/O v/s Memory Bus, I/O<br>Mapped I/O & Memory Mapped I/O.                                          | 12   | 20  |
| Input Output Processor (IOP) : CPU - IOP Communication, Intel 8089 IOP.<br>6. PIPELINE & VECTOR PROCESSING<br>Pipelining: General Considerations, Arithmetic pipeline, Instruction Pipeline. | 12   | 20  |
| Vector Processing: Vector operations, Matrix Multiplication, Memory Interleaving.                                                                                                            |      | ŧ   |
| Total                                                                                                                                                                                        | 64   | 100 |

REFERENCE BOOKS: 1. Computer System Architecture by Morris Mano 2. Computer Organisation and System Architecture by Stalling 3. Microprocessor System Design Concept by Nikitas A. Alexandridis 4. Digital Computer Design by V. Rajaraman

