SYLLABI OF COURSES FOR DIPLOMA PROGRAMME IN MECHANICAL ENGINEERING, LEVEL IV & V 27

-

. . . **.**

	503	3 - TOOL	ENGINEE	RING	(Cl	JTTIN	G TOO)LS)	·I		
Teaching Schedule Per Week			Progressive		Examination Schedule (Marks)						
Lectures	Practical	Credits	Assessn	nent	Theory			Practical Ex.		Total	
3	2	. 5	25	25	3	Hrs.	100	25		175	
Pre-requisite		Source			Theory		Total	TW	PR	Gr Total	
2004/4068		PRD	Semester	7 7	75		100	25	50	175	

RATIONALE:- Tool is the most critical element in any metal removal process. It is the tool, which directly comes in contact with the work-piece and removes the excess material in order to impart desired shape to the work-piece. Hence surface finish and dimensional accuracy of work-piece highly depend on the proper selection and use of cutting tool. Thus, a production engineer, whose principal workplace is shop floor, should necessarily possess some basic knowledge about cutting along with other related things like cutting fluids

COURSE CONTENTS	Hrs	Mks
 MECHANICS OF METAL CUTTING Methods of metal cutting.: Orthogonal cutting, Oblique cutting, Chip formation Process of chip formation: Types of chips, Continuous chips, Segmental/ discontinuous chips, Continuous chip with built up edge Relation between chip formation and surface finish, Force & velocity relationships (only for orthogonal cutting). Shear plane, Cutting ratio/chip thickness ratio, Shear angle, Merchant's theory, Force relation, Velocity relations, Coefficient of friction & friction angle, Cutting power required at tool 	12	25
 MACHINABILITY OF METALS Definition of machinability, Criteria for machinability, Criteria based on tool life, Criteria based on cutting forces, Criteria based on surface finish Relative importance of various criteria Influence of different various on machinability: 1 Machine variables, 2. Tool variables, 3 Tool material- Tool geometry, Tool rigidity, Nature of engagement of tool with the work-piece, Cutting conditions, Cutting speed and feed, Dimensions of cut, Cutting fluids, Work material variables Tool wear: 1 Types of tool wear- Attrition wear, Diffusion wear, Abrasive, Electro- chemical wear, Chemical wear, 2 Geometry of tool wear- Flank wear, Crater wear Tool life: 1 Concepts of tool failure, 2 Definition of tool life, 3 Factor influencing tool life, 4 Taylor's tool life equation, 5 Tool life equation considering the effect of feed and depth of cut. Machining economics: 1 Tool life for maximum production, 2 Tool life for minimum cost per part. 	15	30
 CUTTING TOOLS Single point cutting tools: 1 Geometry of single point cutting tool, Basic tool, angles & their significance, Nose radius & its significance, Tools signature, Turning & boring tools, Drawing, Nomenclature, Influence of tool geometry on chip, cutting forces & surface finish, Various types of form tools. Multiple point cutting tools, 1 Nomenclature & design features of – Twist drills, Spot facers, Reamers, Milling cutters, Taps, Broaches, Gear hobes. 	7	15
 4. CUTTING TOOL MATERIALS 1. History & development of cutting tool materials, 2. Desirable properties of cutting tool materials, 3. Composition, properties, applications and limitations of following tool materials – 	7	15

HUMAN RESOURCE & CURRICULUM DEVELOPMENT CELL, DIRECTORATE OF TECHNICAL EDUCATION, GOA..VL-III

SYLLABI OF COURSES FOR DIPLOMA PROGRAMME IN MECHANICAL ENGINEERING, LEVEL IV & V 28

- 1. Carbon tool steels, 2 High sped steels (HSS), 3. Cemented carbides, 4 Coated carbides, 5 Ceramic tools, 6 Diamond tools, 7 UCON, 8 Cubic boron nitride
- 4 Manufacturing of cemented carbides.
- 5 Guidelines for selection of tool materials.

5. CUTTING FLUIDS

- 1 Functions of cutting fluids,
- 2 Lubricating and cooling action
- 3 Desirable properties of cutting fluids,
- 4 Classification of cutting fluids
- 5 Properties, applications and limitations of common types: 1 Soluble oil or water emulsion, 2 Synthetic coolants, .3 Gaseous fluids
- 6 Selection of cutting fluids
- 7 Preparation, handling and monitoring of cutting fluids: 1 Preparation of soluble
- emulsion, 2 Bacterial control, 3 Storage, 4 Disposal of used cutting fluids, 5 Human
- compatibility and skin irritation.
 - Total 48 100

7

15

PRACTICAL:-

- 1. Drawing single point and multiple point cutting tools, giving
- 2. Their nomenclatures. (Five tools)
- 3. Experiments on Tool Dynamometers.
- 4. Design of cams for automats (two)
- 5. Tool layout for capstan and turret lathers.

REFERENCE BOOKS:-

- 1. Production Technology HMT.
- 2. Production Engineering science. Pandey & Singh
- 3. Production Technology Jain & Agarwal
- 4. Tool Design Donaldson.
- 5. Fundamentals of tool Design ASTME.

HUMAN RESOURCE & CURRICULUM DEVELOPMENT CELL, DIRECTORATE OF TECHNICAL EDUCATION, GOA..VL-III