SYLLABI OF COURSES FOR DIPLOMA PROGRAMME IN PRODUCTION ENGINEERING LEVEL IV-VI, FOR BTE GOA 38

	50	77 - TOO	L ENGIN	EERJ	NG-	II (PR	ESS T	OOLS)	<u> </u>		
Teaching Schedule Per Week			Progressive		Examination Schedule (Marks)						
Lectures	Practical	Credit	Assessm		Theory			l Ex.	Total		
3	3	6		75	3H	rs	100	25/or		200	
Dre requisite		Source		Th	Theory		Total	TW	PR 50	Gr Total	
4060		PRD	Semester		15	a5	100	a5		175	1

RATIONALE: - Manufacturing involves turning raw material to finish products, to be used for the various purposes, a detailed understanding of the manufacturing processes help to appreciate the capabilities, advantages and the limitations of the process. A tool designer must know manufacturing procedures and must understand how tools perform their function. The enclosed syllabus covers the sheet metal cutting and forming operations done on a press and the design of the tools and dies required to perform those operations.

COURSE CONTENTS				
 SHEARING Theory of shear action in metal cutting. Clearances, cutting forces, stripping force and energy requirements with and without shear. Strip layout for blanking. Die block and punch block design. Selection and design of die sets. Design of stripper. Methods of fixing punch. Different types of shear operations. Study of following dies-piercing, blanking, shearing, performing, trimming and compound. 	14	30		
2. DRAWING Metal forming operations. Metal flow in drawing, reduction factors and redrawing limits. Drawing, ironing and blank holding pressures. Clearances. Punch and die ratios. Wall thickening and ironing. Defects in deep drawn parts. Press design for drawing and combination die.				
 BENDING AND FORMING Metal movement in bending and forming, bend radii, development of blanks and bend allowances, sparing back, study of bending forces, design of bending and forming press dies. 		18		
4. PROGRESSIVE DIE Selection of progressive dies. Stock, lifters, strippers and pilots. Strip development for progressive dies. Rules for strip design development. Study on manufacture dies block. Design of various types of progressive dies.				
5. MISCELLANEOUS DIES Horn type dies, Rubber dies, Bulging dies, Hydro forming and Strech forming.				
Total	48	100		

TERM WORK - Designation and drawing any one of the following dies: -Blanking die, punching die, compound die, progressive die. Designing and drawing of a progressive die for bending operations or drawing operations.

REFERENCE BOOKS

Tool design by Donalson, Jecain and Goold.

HUMAN RESOURCE & CURRICULUM DEVELOPMENT CELL, DIRECTORATE OF TECH, EDUCATION, GOA., 2000-10