		5115 - AP	NALYT	ICAL	INSTRU	MENT	ATION	1			
Teaching Schedule Per Week			Progressive		Examination Schedule (Marks)						
Lectures	Practical	Credits	Asses	sment	Tł	eory	Prac	Practical Ex.		Total 150	
3	2	5	25 25		3 Hrs	100	n.	-			
Pre-requisite		Source	Semester		Theory	Test	Total	TW	PR	Gr Tota	
4218		INC			75	25	100	25	-	125	

Rationale: The increasing use of Industrial Process Instrumentation has created the need for more people trained in the use of modern measuring instruments. Not only are certain physical properties desired but also often times correct chemical composition is necessary as well, if the desired end result are to be achieved. This course covers the analysis of the unknown samples with sophisticated equipment used in today's laboratories.

COURSE CONTENT	Hrs.	Mks.	
 CHEMICAL ANALYSERS Gas Chromatograph: Principles of operation, control section, analysis section, thermal conductivity detector, peak picker. Liquid Chromatograph: Comparison with gas chromatograph, components, flame ionisation detector, conductivity measurement. pH measurement: Principles, devices, pH meter, redox measurements, applications for industrial process. Oxygen Analysers: Need for oxygen content analysis, combustion type, paramagnetic type, dissolved oxygen analyser probes. 	15	35	
2. OPTICAL ANALYZERS Colorimeter: -Beer's law, Spectrophotometric Analysers, UV- visible Spectro- photometry, Non-dispersive IR Spectrophotometry, IR dispersive Spectro- photometry, Flame Photometry.	10	20	
3. MISCELLANEOUS MEASUREMENTS Industrial measurement with radioisotopes, radioactivity. Types of Radiations: Radioisotopic Detectors, Ionisation Counter, Geiger Muller Counter, Liquid Scintillation Counter; Thickness measurement techniques. Liquid level guages: Humidity and moisture content measurements, principles, devices, methods.	12	25	
4. PROCESS INSTRUMENTS & AUTOMATIC ANALYSIS Automation strategy. Industrial process analyzers, On-line Potetiometric analyzers, difference between process & laboratory chromatographs. Discrete Analysers, sampling systems, operating conditions. Continuous Analyzers. Automatic Analyzers (In situ or via sampling devices).	08	15	
5. MAINTENANCE OF ANALYTICAL INSTRUMENTS General maintenance schedules. Maintaining logbook. Record for failure rate. Managing spare parts.	03	05	
Total	48	100	

PRACTICALS: (Minimum 8)

۱. To study the working of a gas chromatographs and understand reading of chromatogram.

- 2. To study the working of the Thermal conductivity Detector
 - Using a pH meter, find out the pH of different acidic and basic solvents.
- To study the Optical path of UV/VIS/IR Spectrophotometer and identify its various Components 4. (2 Turns)
- 5.
- To determine the scanning wavelength of a given sample by peak absorbance method. To determine the concentration of the unknown sample using UV-visible spectrophotometer 6.
- 7. To find out the concentration to ppm level, using flame Photometer
- 8. To study the working of the any one type of dissolved oxygen analyser.
- 9. To study the various methods used for maintenance of Analytical Instruments.
- 10. To calibrate a digital pH meter.
- 11. Industrial visits to study the gas chromatograph and the chromatogram.
- 12. Industrial visit to study the working of any one type of detector used in chromatography.

TEXT BOOKS:

3.

Industrial Instrumentation Fundamentals by Austin Fribance REFERENCE BOOKS:

- Instrument Engineer's Handbook (Vol.I) by Bela Liptak 1.
- 2. Control System Technology by C. J. Chesmond.
- 3. Instrumental Methods of Analysis by Willard, Merritt, Dean, Settle

